From 4a345b832cb92dbb9cf7c67c52f56a34b9d8fac0 Mon Sep 17 00:00:00 2001
From: coolneng <akasroua@gmail.com>
Date: Sun, 13 Dec 2020 22:24:52 +0100
Subject: [PATCH] Fix data normalization for knn

---
 src/P1/processing.py | 5 +++--
 1 file changed, 3 insertions(+), 2 deletions(-)

diff --git a/src/P1/processing.py b/src/P1/processing.py
index fd41bdf..7edbbd0 100644
--- a/src/P1/processing.py
+++ b/src/P1/processing.py
@@ -8,7 +8,7 @@ from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve
 from sklearn.naive_bayes import GaussianNB
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.neural_network import MLPClassifier
-from sklearn.preprocessing import scale
+from sklearn.preprocessing import MinMaxScaler
 from sklearn.svm import LinearSVC
 from sklearn.tree import DecisionTreeClassifier
 
@@ -32,7 +32,8 @@ def predict_data(data, target, model, results):
     model_name = model
     model = choose_model(model=model)
     if model_name == "knn":
-        data = scale(data)
+        scaler = MinMaxScaler()
+        data[data.columns] = scaler.fit_transform(data[data.columns])
     confusion_matrices, auc, fpr, tpr = [], [], [], []
     for train_index, test_index in split_k_sets(data):
         model.fit(data.iloc[train_index], target.iloc[train_index])