IN-P2/src/P1/processing.py

180 lines
5.8 KiB
Python

from sys import argv
from matplotlib.pyplot import *
from numpy import arange, mean
from pandas import DataFrame, cut
from seaborn import countplot, heatmap, set_style, set_theme
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import scale
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from preprocessing import parse_data, split_k_sets
def choose_model(model):
if model == "gnb":
return GaussianNB()
elif model == "svc":
return LinearSVC(random_state=42)
elif model == "knn":
return KNeighborsClassifier(n_neighbors=10)
elif model == "tree":
return DecisionTreeClassifier(random_state=42)
elif model == "neuralnet":
return MLPClassifier(hidden_layer_sizes=10)
def predict_data(data, target, model, results):
model = choose_model(model)
if model == "knn":
data = scale(data)
confusion_matrices, auc, fpr, tpr = [], [], [], []
for train_index, test_index in split_k_sets(data):
model.fit(data.iloc[train_index], target.iloc[train_index])
prediction = model.predict(data.iloc[test_index])
confusion_matrices.append(confusion_matrix(target.iloc[test_index], prediction))
auc.append(roc_auc_score(target.iloc[test_index], prediction))
fpr_item, tpr_item, _ = roc_curve(target.iloc[test_index], prediction)
fpr.append(fpr_item)
tpr.append(tpr_item)
populated_results = populate_results(
df=results,
model=model,
fpr=mean(fpr, axis=0),
tpr=mean(tpr, axis=0),
auc=mean(auc),
confusion_matrix=mean(confusion_matrices, axis=0),
)
return populated_results
def plot_roc_auc_curve(results):
fig = figure(figsize=(8, 6))
for model in results.index:
rounded_auc = round(results.loc[model]["auc"], 3)
plot(
results.loc[model]["fpr"],
results.loc[model]["tpr"],
label=f"{model} , AUC={rounded_auc}",
)
xticks(arange(0.0, 1.0, step=0.1))
yticks(arange(0.0, 1.0, step=0.1))
legend(loc="lower right")
fig_title = "ROC AUC curve"
title(fig_title)
xlabel("False positive rate")
ylabel("True positive rate")
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
def plot_confusion_matrix(results):
set_style("white")
matrix = results.filter(items=["model", "confusion_matrix"])
fig, axes = subplots(nrows=1, ncols=5, figsize=(8, 6))
for i in range(len(axes)):
heatmap(
ax=axes[i],
data=matrix.iloc[i]["confusion_matrix"],
cmap="Blues",
square=True,
annot=True,
cbar=False,
)
axes[i].set_title(matrix.index[i])
fig_title = "Confusion Matrix"
suptitle(fig_title)
show()
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
def plot_attributes_correlation(data, target):
transformed_data = transform_dataframe(data, target)
fig, axes = subplots(nrows=5, ncols=1, figsize=(8, 6))
for i in range(len(axes)):
countplot(
ax=axes[i],
x=transformed_data.columns[i],
data=transformed_data,
hue="Severity",
)
axes[i].set_title(transformed_data.columns[i])
fig_title = "Attribute's correlation"
suptitle(fig_title)
show()
fig.savefig(f"docs/assets/{fig_title.replace(' ', '_').lower()}.png")
def plot_all_figures(results, data, target):
set_theme()
plot_roc_auc_curve(results=results)
plot_confusion_matrix(results=results)
plot_attributes_correlation(data=data, target=target)
def create_result_dataframes():
results = DataFrame(columns=["model", "fpr", "tpr", "auc", "confusion_matrix"])
indexed_results = results.set_index("model")
return indexed_results, indexed_results
def populate_results(df, model, fpr, tpr, auc, confusion_matrix):
renamed_model = rename_model(model=f"{model}")
columns = ["model", "fpr", "tpr", "auc", "confusion_matrix"]
values = [renamed_model, fpr, tpr, auc, confusion_matrix]
dictionary = dict(zip(columns, values))
populated_df = df.append(dictionary, ignore_index=True)
return populated_df
def rename_model(model):
short_name = ["gnb", "svc", "knn", "tree", "neuralnet"]
models = [
"GaussianNB()",
"LinearSVC(random_state=42)",
"KNeighborsClassifier(n_neighbors=10)",
"DecisionTreeClassifier(random_state=42)",
"MLPClassifier(hidden_layer_sizes=10)",
]
mapping = dict(zip(models, short_name))
return mapping[model]
def transform_dataframe(data, target):
joined_df = data.join(target)
binned_df = joined_df.copy()
binned_df["Age"] = cut(x=joined_df["Age"], bins=[15, 30, 45, 60, 75])
return binned_df
def usage():
print("Usage: " + argv[0] + "<preprocessing action>")
print("preprocessing actions:")
print("fill: fills the na values with the mean")
print("drop: drops the na values")
exit()
def main():
models = ["gnb", "svc", "knn", "tree", "neuralnet"]
if len(argv) != 2:
usage()
data, target = parse_data(source="data/mamografia.csv", action=str(argv[1]))
individual_result, complete_results = create_result_dataframes()
for model in models:
model_results = predict_data(
data=data, target=target, model=model, results=individual_result
)
complete_results = complete_results.append(
individual_result.append(model_results)
)
indexed_results = complete_results.set_index("model")
plot_all_figures(results=indexed_results, data=data, target=target)
if __name__ == "__main__":
main()