Compare commits

..

2 Commits

Author SHA1 Message Date
0471cb0ab8
Add pandas to nix-shell instead of poetry 2021-01-01 21:54:28 +01:00
e05ccdabb9
Remove string trimming function 2021-01-01 21:54:05 +01:00
3 changed files with 23 additions and 31 deletions

View File

@ -7,14 +7,11 @@ authors = ["coolneng <akasroua@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.8"
scikit-learn = "^0.24.0"
pandas = "^1.2.0"
imbalanced-learn = "^0.7.0"
numpy = "^1.19.4"
[tool.poetry.dev-dependencies]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
competition = "processing:main"

View File

@ -2,4 +2,4 @@
with pkgs;
mkShell { buildInputs = [ python38 poetry ]; }
mkShell { buildInputs = [ python38 python38Packages.pandas poetry ]; }

View File

@ -21,38 +21,32 @@ def rename_columns(df_list) -> DataFrame:
def drop_null_values(df_list):
for df in df_list:
df.dropna(inplace=True)
df.drop(columns="tipo_marchas", inplace=True)
df["descuento"].fillna(0)
return df_list
def trim_column_names(df_list) -> DataFrame:
columns = ["consumo", "motor_CC", "potencia"]
for df in df_list:
for col in columns:
df[col] = df[col].str.replace(pat="[^.0-9]", repl="").astype(float)
df.drop(columns="descuento", inplace=True)
df.dropna(inplace=True)
return df_list
def encode_columns(df_list):
label_encoder = LabelEncoder()
files = [
"ao"
"asientos"
"ciudad"
"combustible"
"consumo"
"descuento"
"kilometros"
"mano"
"motor_cc"
"nombre"
"potencia"
"ao",
"asientos",
"ciudad",
"combustible",
"consumo",
"kilometros",
"mano",
"motor_cc",
"nombre",
"potencia",
]
for data in files:
for df in df_list:
label = label_encoder.fit(read_csv("data/" + data + ".csv", squeeze=True))
if data == "ao":
df["año"] = label.transform(df["año"])
else:
df[data] = label.transform(df[data])
return df_list
@ -72,8 +66,10 @@ def balance_training_data(df):
smote_tomek = SMOTETomek(random_state=42)
data, target = split_data_target(df=df, dataset="data")
balanced_data, balanced_target = smote_tomek.fit_resample(data, target)
balanced_data_df = DataFrame(balanced_data, columns=data.columns)
balanced_target_df = DataFrame(balanced_target, columns=target.columns)
balanced_data_df = DataFrame(
balanced_data, columns=df.columns.difference(["precio_cat"])
)
balanced_target_df = DataFrame(balanced_target, columns=["precio_cat"])
return balanced_data_df, balanced_target_df
@ -86,8 +82,7 @@ def parse_data(train, test):
df_list = construct_dataframes(train=train, test=test)
renamed_df_list = rename_columns(df_list)
processed_df_list = drop_null_values(renamed_df_list)
numeric_df_list = trim_column_names(processed_df_list)
encoded_df_list = encode_columns(numeric_df_list)
encoded_df_list = encode_columns(processed_df_list)
train_data, train_target = balance_training_data(encoded_df_list[0])
test_data, test_ids = split_data_target(encoded_df_list[1], dataset="test")
return train_data, train_target, test_data, test_ids