Compare commits

..

No commits in common. "abfc877c7d1a96d53d89d3d0c407883566cee7a7" and "3848a25c32b1aac4c4eaf8638e1c6681c9427259" have entirely different histories.

3 changed files with 8 additions and 109 deletions

View File

@ -1,26 +0,0 @@
#+TITLE: Práctica 3
#+SUBTITLE: Inteligencia de Negocio
#+AUTHOR: Amin Kasrou Aouam
#+DATE: 2021-01-01
#+PANDOC_OPTIONS: template:~/.pandoc/templates/eisvogel.latex
#+PANDOC_OPTIONS: listings:t
#+PANDOC_OPTIONS: toc:t
#+PANDOC_METADATA: lang=es
#+PANDOC_METADATA: titlepage:t
#+PANDOC_METADATA: listings-no-page-break:t
#+PANDOC_METADATA: toc-own-page:t
#+PANDOC_METADATA: table-use-row-colors:t
#+PANDOC_METADATA: logo:/home/coolneng/Photos/Logos/UGR.png
* Práctica 3
** Introducción
En esta práctica, resolveremos un problema de clasificación multiclase, en concreto, trataremos de predecir la categoría de precio de una serie de coches
** Preprocesamiento de datos
*** Valores nulos
*** Valores no numéricos
*** Balanceo de clases
** Elección de algoritmo
** Configuración del algoritmo
** Resultados obtenidos
** Análisis de resultados

View File

@ -1,7 +1,6 @@
from pandas import DataFrame, read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
from imblearn.combine import SMOTETomek
def construct_dataframes(train, test):
@ -13,17 +12,16 @@ def construct_dataframes(train, test):
return df_list
def rename_columns(df_list) -> DataFrame:
for df in df_list:
df.columns = df.columns.str.lower()
return df_list
def drop_null_values(df_list):
for df in df_list:
df.dropna(inplace=True)
df.drop(columns="tipo_marchas", inplace=True)
df["descuento"].fillna(0)
df.drop(columns="Tipo_marchas", inplace=True)
return df_list
def rename_columns(df_list) -> DataFrame:
for df in df_list:
df.columns = df.columns.str.lower()
return df_list
@ -57,26 +55,6 @@ def encode_columns(df_list):
return df_list
def split_data_target(df, dataset):
if dataset == "data":
df.drop(columns="id", inplace=True)
data = df.drop(columns=["precio_cat"])
target = df["precio_cat"]
else:
data = df.drop(columns=["id"])
target = df["id"]
return data, target
def balance_training_data(df):
smote_tomek = SMOTETomek(random_state=42)
data, target = split_data_target(df=df, dataset="data")
balanced_data, balanced_target = smote_tomek.fit_resample(data, target)
balanced_data_df = DataFrame(balanced_data, columns=data.columns)
balanced_target_df = DataFrame(balanced_target, columns=target.columns)
return balanced_data_df, balanced_target_df
def split_k_sets(df):
k_fold = KFold(shuffle=True, random_state=42)
return k_fold.split(df)
@ -88,6 +66,4 @@ def parse_data(train, test):
processed_df_list = drop_null_values(renamed_df_list)
numeric_df_list = trim_column_names(processed_df_list)
encoded_df_list = encode_columns(numeric_df_list)
train_data, train_target = balance_training_data(encoded_df_list[0])
test_data, test_ids = split_data_target(encoded_df_list[1], dataset="test")
return train_data, train_target, test_data, test_ids
return encoded_df_list

View File

@ -1,51 +0,0 @@
from numpy import mean
from pandas import DataFrame
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import GradientBoostingClassifier
from preprocessing import parse_data, split_k_sets
def predict_data(train_data, train_target, test_data, test_ids):
model = GradientBoostingClassifier(random_state=42)
accuracy_scores = []
for train_index, test_index in split_k_sets(train_data):
model.fit(train_data.iloc[train_index], train_target.iloc[train_index])
prediction = model.predict(train_data.iloc[test_index])
accuracy_scores.append(
accuracy_score(train_target.iloc[test_index], prediction)
)
cv_score = cross_val_score(model, train_data, train_target)
evaluate_performance(
accuracy=mean(accuracy_scores),
cv_score=mean(cv_score),
)
predictions = model.predict(test_data)
export_results(ids=test_ids, prediction=predictions)
def evaluate_performance(accuracy, cv_score):
print("Accuracy Score: " + str(accuracy))
print("Cross validation score: " + str(cv_score))
def export_results(ids, prediction):
result_df = DataFrame({"id": ids, "Precio_cat": prediction})
result_df.to_csv(path_or_buf="data/results.csv", index=False)
def main():
train_data, train_target, test_data, test_ids = parse_data(
train="data/train.csv", test="data/test.csv"
)
predict_data(
train_data=train_data,
train_target=train_target,
test_data=test_data,
test_ids=test_ids,
)
if __name__ == "__main__":
main()