Cast distance to float to get the maximum value
This commit is contained in:
		
							parent
							
								
									f73e28fb8a
								
							
						
					
					
						commit
						04c92add44
					
				@ -12,7 +12,7 @@ def get_first_solution(n, data):
 | 
				
			|||||||
        distance_sum = distance_sum.append(
 | 
					        distance_sum = distance_sum.append(
 | 
				
			||||||
            {"point": element, "distance": distance}, ignore_index=True
 | 
					            {"point": element, "distance": distance}, ignore_index=True
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
    furthest_index = distance_sum["distance"].idxmax()
 | 
					    furthest_index = distance_sum["distance"].astype(float).idxmax()
 | 
				
			||||||
    furthest_row = distance_sum.iloc[furthest_index]
 | 
					    furthest_row = distance_sum.iloc[furthest_index]
 | 
				
			||||||
    furthest_row["distance"] = 0
 | 
					    furthest_row["distance"] = 0
 | 
				
			||||||
    return furthest_row
 | 
					    return furthest_row
 | 
				
			||||||
@ -26,13 +26,14 @@ def get_different_element(original, row):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
def get_furthest_element(element, data):
 | 
					def get_furthest_element(element, data):
 | 
				
			||||||
    element_df = data.query(f"source == {element} or destination == {element}")
 | 
					    element_df = data.query(f"source == {element} or destination == {element}")
 | 
				
			||||||
    furthest_index = element_df["distance"].idxmax()
 | 
					    furthest_index = element_df["distance"].astype(float).idxmax()
 | 
				
			||||||
    furthest_row = data.iloc[furthest_index]
 | 
					    furthest_row = data.iloc[furthest_index]
 | 
				
			||||||
    furthest_point = get_different_element(original=element, row=furthest_row)
 | 
					    furthest_point = get_different_element(original=element, row=furthest_row)
 | 
				
			||||||
    furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
 | 
					    furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
 | 
				
			||||||
    return furthest_element, furthest_index
 | 
					    return furthest_element, furthest_index
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# FIXME Remove duplicated elements properly
 | 
				
			||||||
def greedy_algorithm(n, m, data):
 | 
					def greedy_algorithm(n, m, data):
 | 
				
			||||||
    solutions = DataFrame(columns=["point", "distance"])
 | 
					    solutions = DataFrame(columns=["point", "distance"])
 | 
				
			||||||
    first_solution = get_first_solution(n, data)
 | 
					    first_solution = get_first_solution(n, data)
 | 
				
			||||||
@ -50,7 +51,6 @@ def get_pseudorandom_solution(n, data):
 | 
				
			|||||||
    return data.iloc[randint(a=0, b=n)]
 | 
					    return data.iloc[randint(a=0, b=n)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# NOTE In each step, switch to the element that gives the least amount
 | 
					 | 
				
			||||||
def local_search(n, m, data):
 | 
					def local_search(n, m, data):
 | 
				
			||||||
    solutions = DataFrame(columns=["point", "distance"])
 | 
					    solutions = DataFrame(columns=["point", "distance"])
 | 
				
			||||||
    first_solution = get_pseudorandom_solution(n=n, data=data)
 | 
					    first_solution = get_pseudorandom_solution(n=n, data=data)
 | 
				
			||||||
@ -74,6 +74,7 @@ def show_results(solutions):
 | 
				
			|||||||
    distance_sum = solutions["distance"].sum()
 | 
					    distance_sum = solutions["distance"].sum()
 | 
				
			||||||
    print(solutions)
 | 
					    print(solutions)
 | 
				
			||||||
    print("Total distance: " + str(distance_sum))
 | 
					    print("Total distance: " + str(distance_sum))
 | 
				
			||||||
 | 
					    print(solutions.duplicated())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def usage(argv):
 | 
					def usage(argv):
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user