Compute the first element for the greedy algorithm
This commit is contained in:
		
							parent
							
								
									8b72d3f01c
								
							
						
					
					
						commit
						27f3baca07
					
				@ -1,6 +1,5 @@
 | 
				
			|||||||
from preprocessing import parse_file
 | 
					from preprocessing import parse_file
 | 
				
			||||||
from pandas import DataFrame
 | 
					from pandas import DataFrame, Series
 | 
				
			||||||
from secrets import randbelow
 | 
					 | 
				
			||||||
from sys import argv
 | 
					from sys import argv
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -8,16 +7,37 @@ def get_furthest_element(element, data):
 | 
				
			|||||||
    element_df = data.query(f"source == {element} or destination == {element}")
 | 
					    element_df = data.query(f"source == {element} or destination == {element}")
 | 
				
			||||||
    furthest_index = element_df["distance"].idxmax()
 | 
					    furthest_index = element_df["distance"].idxmax()
 | 
				
			||||||
    furthest_row = data.iloc[furthest_index]
 | 
					    furthest_row = data.iloc[furthest_index]
 | 
				
			||||||
 | 
					    print(furthest_row)
 | 
				
			||||||
 | 
					    return furthest_row
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_first_solution(n, data):
 | 
				
			||||||
 | 
					    distance_sum = DataFrame(columns=["point", "distance"])
 | 
				
			||||||
 | 
					    for element in range(n):
 | 
				
			||||||
 | 
					        element_df = data.query(f"source == {element} or destination == {element}")
 | 
				
			||||||
 | 
					        distance = element_df["distance"].sum()
 | 
				
			||||||
 | 
					        distance_sum = distance_sum.append(
 | 
				
			||||||
 | 
					            {"point": element, "distance": distance}, ignore_index=True
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    furthest_index = distance_sum["distance"].idxmax()
 | 
				
			||||||
 | 
					    furthest_row = distance_sum.iloc[furthest_index]
 | 
				
			||||||
    return furthest_row
 | 
					    return furthest_row
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def greedy_algorithm(n, m, data):
 | 
					def greedy_algorithm(n, m, data):
 | 
				
			||||||
    solutions = DataFrame(columns=["source", "destination", "distance"])
 | 
					    solutions = DataFrame(columns=["point", "distance"])
 | 
				
			||||||
 | 
					    first_solution = get_first_solution(n, data)
 | 
				
			||||||
 | 
					    solutions = solutions.append(first_solution, ignore_index=True)
 | 
				
			||||||
    for _ in range(m):
 | 
					    for _ in range(m):
 | 
				
			||||||
        centroid = get_furthest_element(element=randbelow(n), data=data)
 | 
					        centroid = solutions.apply(get_furthest_element, 1, data)
 | 
				
			||||||
        solutions = solutions.append(centroid)
 | 
					        solutions = solutions.append(centroid)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# NOTE In each step, switch the element that gives the least amount
 | 
				
			||||||
 | 
					def local_search():
 | 
				
			||||||
 | 
					    pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def usage(argv):
 | 
					def usage(argv):
 | 
				
			||||||
    print(f"Usage: python {argv[0]} <file>")
 | 
					    print(f"Usage: python {argv[0]} <file>")
 | 
				
			||||||
    exit(1)
 | 
					    exit(1)
 | 
				
			||||||
@ -27,6 +47,7 @@ def main():
 | 
				
			|||||||
    if len(argv) != 2:
 | 
					    if len(argv) != 2:
 | 
				
			||||||
        usage(argv)
 | 
					        usage(argv)
 | 
				
			||||||
    n, m, data = parse_file(argv[1])
 | 
					    n, m, data = parse_file(argv[1])
 | 
				
			||||||
 | 
					    greedy_algorithm(n, m, data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user