Compute the first element for the greedy algorithm
This commit is contained in:
		
							parent
							
								
									8b72d3f01c
								
							
						
					
					
						commit
						27f3baca07
					
				@ -1,6 +1,5 @@
 | 
			
		||||
from preprocessing import parse_file
 | 
			
		||||
from pandas import DataFrame
 | 
			
		||||
from secrets import randbelow
 | 
			
		||||
from pandas import DataFrame, Series
 | 
			
		||||
from sys import argv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -8,16 +7,37 @@ def get_furthest_element(element, data):
 | 
			
		||||
    element_df = data.query(f"source == {element} or destination == {element}")
 | 
			
		||||
    furthest_index = element_df["distance"].idxmax()
 | 
			
		||||
    furthest_row = data.iloc[furthest_index]
 | 
			
		||||
    print(furthest_row)
 | 
			
		||||
    return furthest_row
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_first_solution(n, data):
 | 
			
		||||
    distance_sum = DataFrame(columns=["point", "distance"])
 | 
			
		||||
    for element in range(n):
 | 
			
		||||
        element_df = data.query(f"source == {element} or destination == {element}")
 | 
			
		||||
        distance = element_df["distance"].sum()
 | 
			
		||||
        distance_sum = distance_sum.append(
 | 
			
		||||
            {"point": element, "distance": distance}, ignore_index=True
 | 
			
		||||
        )
 | 
			
		||||
    furthest_index = distance_sum["distance"].idxmax()
 | 
			
		||||
    furthest_row = distance_sum.iloc[furthest_index]
 | 
			
		||||
    return furthest_row
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def greedy_algorithm(n, m, data):
 | 
			
		||||
    solutions = DataFrame(columns=["source", "destination", "distance"])
 | 
			
		||||
    solutions = DataFrame(columns=["point", "distance"])
 | 
			
		||||
    first_solution = get_first_solution(n, data)
 | 
			
		||||
    solutions = solutions.append(first_solution, ignore_index=True)
 | 
			
		||||
    for _ in range(m):
 | 
			
		||||
        centroid = get_furthest_element(element=randbelow(n), data=data)
 | 
			
		||||
        centroid = solutions.apply(get_furthest_element, 1, data)
 | 
			
		||||
        solutions = solutions.append(centroid)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# NOTE In each step, switch the element that gives the least amount
 | 
			
		||||
def local_search():
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def usage(argv):
 | 
			
		||||
    print(f"Usage: python {argv[0]} <file>")
 | 
			
		||||
    exit(1)
 | 
			
		||||
@ -27,6 +47,7 @@ def main():
 | 
			
		||||
    if len(argv) != 2:
 | 
			
		||||
        usage(argv)
 | 
			
		||||
    n, m, data = parse_file(argv[1])
 | 
			
		||||
    greedy_algorithm(n, m, data)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user