Implement furthest element computation
This commit is contained in:
		
							parent
							
								
									27f3baca07
								
							
						
					
					
						commit
						85e6b072c6
					
				@ -1,16 +1,8 @@
 | 
			
		||||
from preprocessing import parse_file
 | 
			
		||||
from pandas import DataFrame, Series
 | 
			
		||||
from pandas import DataFrame
 | 
			
		||||
from sys import argv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_furthest_element(element, data):
 | 
			
		||||
    element_df = data.query(f"source == {element} or destination == {element}")
 | 
			
		||||
    furthest_index = element_df["distance"].idxmax()
 | 
			
		||||
    furthest_row = data.iloc[furthest_index]
 | 
			
		||||
    print(furthest_row)
 | 
			
		||||
    return furthest_row
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_first_solution(n, data):
 | 
			
		||||
    distance_sum = DataFrame(columns=["point", "distance"])
 | 
			
		||||
    for element in range(n):
 | 
			
		||||
@ -24,16 +16,33 @@ def get_first_solution(n, data):
 | 
			
		||||
    return furthest_row
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_different_element(original, row):
 | 
			
		||||
    if row.source == original:
 | 
			
		||||
        return row.destination
 | 
			
		||||
    return row.source
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_furthest_element(element, data):
 | 
			
		||||
    element_df = data.query(f"source == {element} or destination == {element}")
 | 
			
		||||
    furthest_index = element_df["distance"].idxmax()
 | 
			
		||||
    furthest_row = data.iloc[furthest_index]
 | 
			
		||||
    furthest_point = get_different_element(original=element, row=furthest_row)
 | 
			
		||||
    return {"point": furthest_point, "distance": furthest_row["distance"]}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def greedy_algorithm(n, m, data):
 | 
			
		||||
    solutions = DataFrame(columns=["point", "distance"])
 | 
			
		||||
    first_solution = get_first_solution(n, data)
 | 
			
		||||
    solutions = solutions.append(first_solution, ignore_index=True)
 | 
			
		||||
    for _ in range(m):
 | 
			
		||||
        centroid = solutions.apply(get_furthest_element, 1, data)
 | 
			
		||||
        solutions = solutions.append(centroid)
 | 
			
		||||
        last_solution = solutions["point"].tail(n=1)
 | 
			
		||||
        centroid = get_furthest_element(element=int(last_solution), data=data)
 | 
			
		||||
        solutions = solutions.append(dict(centroid), ignore_index=True)
 | 
			
		||||
        data = data.drop(centroid["point"], columns=["source", "destination"])
 | 
			
		||||
    print(solutions)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# NOTE In each step, switch the element that gives the least amount
 | 
			
		||||
# NOTE In each step, switch to the element that gives the least amount
 | 
			
		||||
def local_search():
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user