Compare commits

..

11 Commits

6 changed files with 295 additions and 54 deletions

0
docs/.gitkeep Normal file
View File

143
docs/Summary.org Normal file
View File

@@ -0,0 +1,143 @@
#+TITLE: Práctica 2
#+SUBTITLE: Metaheurísticas
#+AUTHOR: Amin Kasrou Aouam
#+DATE: 2021-06-22
#+PANDOC_OPTIONS: template:~/.pandoc/templates/eisvogel.latex
#+PANDOC_OPTIONS: listings:t
#+PANDOC_OPTIONS: toc:t
#+PANDOC_METADATA: lang=es
#+PANDOC_METADATA: titlepage:t
#+PANDOC_METADATA: listings-no-page-break:t
#+PANDOC_METADATA: toc-own-page:t
#+PANDOC_METADATA: table-use-row-colors:t
#+PANDOC_METADATA: colorlinks:t
#+PANDOC_METADATA: logo:/home/coolneng/Photos/Logos/UGR.png
#+LaTeX_HEADER: \usepackage[ruled, lined, linesnumbered, commentsnumbered, longend]{algorithm2e}
* Práctica 2
** Introducción
En esta práctica, usaremos distintos algoritmos de búsqueda, basados en poblaciones, para resolver el problema de la máxima diversidad (MDP). Implementaremos:
- Algoritmo genético
- Algoritmo memético
** Algoritmos
*** Genético
Los algoritmos genéticos se inspiran en la evolución natural y la genética. Generan un conjunto de soluciones inicial (i.e. población), seleccionan un subconjunto de individuos sobre los cuales se opera, hacen operaciones de recombinación y mutación, y finalmente reemplazan la población anterior por una nueva.
El procedimiento general del algoritmo queda ilustrado a continuación:
\begin{algorithm}
\KwIn{A list $[a_i]$, $i=1, 2, \cdots, n$, that contains the population of individuals}
\KwOut{Processed list}
$P(t) \leftarrow initializePopulation()$
$P(t) \leftarrow evaluatePopulation()$
\While{$\neg stop condition $}{
$t = t + 1$
$parents \leftarrow selectParents(P(t-1))$
$offspring \leftarrow recombine(parents)$
$offspring \leftarrow mutate(offspring)$
$P(t) \leftarrow replacePopulation(P(t-1), offspring)$
$P(t) \leftarrow evaluatePopulation()$
}
\KwRet{$P(t)$}
\end{algorithm}
Procedemos a la implementación de 4 variantes distintas, según 2 criterios:
**** Criterio de reemplazamiento
- *Generacional*: la nueva población reemplaza totalmente a la población anterior
- *Estacionario*: los dos mejores hijos reemplazan los dos peores individuos en la población anterior
**** Operador de cruce
- *Uniforme*: mantiene las posiciones comunes de ambos padres, las demás se eligen de forma aleatoria de cada padre (requiere reparador)
- *Posición*: mantiene las posiciones comunes de ambos padres, elige el resto de elementos de cada padre y los baraja. Genera 2 hijos.
*** Memético
Los algoritmos meméticos surgen de la hibridación de un algoritmo genético, con un algoritmo de búsqueda local. El resultado es un algoritmo que posee un buen equilibrio entre exploración y explotación.
El procedimiento general del algoritmo queda ilustrado a continuación:
\begin{algorithm}
\KwIn{A list $[a_i]$, $i=1, 2, \cdots, n$, that contains the population of individuals}
\KwOut{Processed list}
$P(t) \leftarrow initializePopulation()$
$P(t) \leftarrow evaluatePopulation()$
\While{$\neg stop condition $}{
\If{$certain iteration$}{
$P(t) <- localSearch(P(t-1))$
}
$t = t + 1$
$parents \leftarrow selectParents(P(t-1))$
$offspring \leftarrow recombine(parents)$
$offspring \leftarrow mutate(offspring)$
$P(t) \leftarrow replacePopulation(P(t-1), offspring)$
$P(t) \leftarrow evaluatePopulation()$
}
\KwRet{$P(t)$}
\end{algorithm}
Procedemos a la implementación de 3 variantes distintas:
- Búsqueda local sobre todos los cromosomas
- Búsqueda local sobre un subconjunto aleatorio de cromosomas
- Búsqueda local sobre un el subconjunto de los mejores cromosomas
** Implementación
La práctica ha sido implementada en /Python/, usando las siguientes bibliotecas:
- NumPy
- Pandas
*** Instalación
Para ejecutar el programa es preciso instalar Python, junto con las bibliotecas *Pandas* y *NumPy*.
Se proporciona el archivo shell.nix para facilitar la instalación de las dependencias, con el gestor de paquetes [[https://nixos.org/][Nix]]. Tras instalar la herramienta Nix, únicamente habría que ejecutar el siguiente comando en la raíz del proyecto:
#+begin_src shell
nix-shell
#+end_src
** Ejecución
La ejecución del programa se realiza mediante el siguiente comando:
#+begin_src shell
python src/main.py <dataset> <algoritmo> <parámetros>
#+end_src
Los parámetros posibles son:
| dataset | algoritmo | parámetros |
| Cualquier archivo de la carpeta data | genetic | uniform/position generation/stationary |
| | memetic | all/random/best |
También se proporciona un script que ejecuta 1 iteración de cada algoritmo, sobre cada uno de los /datasets/, y guarda los resultados en una hoja de cálculo. Se puede ejecutar mediante el siguiente comando:
#+begin_src shell
python src/execution.py
#+end_src
*Nota*: se precisa instalar la biblioteca [[https://xlsxwriter.readthedocs.io/][XlsxWriter]] para la exportación de los resultados a un archivo Excel.
* Análisis de los resultados
Desafortunadamente, debido a un tiempo de ejecución excesivamente alto (incluso tras ajustar los metaparámetros) no podemos proporcionar resultados de la ejecución de los algoritmos.

BIN
docs/Summary.pdf Normal file

Binary file not shown.

View File

@@ -14,70 +14,67 @@ def file_list(path):
def create_dataframes(): def create_dataframes():
greedy = DataFrame() return [DataFrame() for _ in range(7)]
local = DataFrame()
return greedy, local
def process_output(results): def process_output(results):
distances = [] distances = []
time = [] time = []
for element in results: for line in results:
for line in element: if line.startswith(bytes("Total distance:", encoding="utf-8")):
if line.startswith(bytes("Total distance:", encoding="utf-8")): line_elements = line.split(sep=bytes(":", encoding="utf-8"))
line_elements = line.split(sep=bytes(":", encoding="utf-8")) distances.append(float(line_elements[1]))
distances.append(float(line_elements[1])) if line.startswith(bytes("Execution time:", encoding="utf-8")):
if line.startswith(bytes("Execution time:", encoding="utf-8")): line_elements = line.split(sep=bytes(":", encoding="utf-8"))
line_elements = line.split(sep=bytes(":", encoding="utf-8")) time.append(float(line_elements[1]))
time.append(float(line_elements[1]))
return distances, time return distances, time
def populate_dataframes(greedy, local, greedy_list, local_list, dataset): def populate_dataframe(df, output_cmd, dataset):
greedy_distances, greedy_time = process_output(greedy_list) distances, time = process_output(output_cmd)
local_distances, local_time = process_output(local_list) data_dict = {
greedy_dict = {
"dataset": dataset.removeprefix("data/"), "dataset": dataset.removeprefix("data/"),
"media distancia": mean(greedy_distances), "media distancia": mean(distances),
"desviacion distancia": std(greedy_distances), "desviacion distancia": std(distances),
"media tiempo": mean(greedy_time), "media tiempo": mean(time),
"desviacion tiempo": std(greedy_time), "desviacion tiempo": std(time),
} }
local_dict = { df = df.append(data_dict, ignore_index=True)
"dataset": dataset.removeprefix("data/"), return df
"media distancia": mean(local_distances),
"desviacion distancia": std(local_distances),
"media tiempo": mean(local_time),
"desviacion tiempo": std(local_time),
}
greedy = greedy.append(greedy_dict, ignore_index=True)
local = local.append(local_dict, ignore_index=True)
return greedy, local
def script_execution(filenames, greedy, local, iterations=3): def script_execution(filenames, df_list):
script = "src/main.py" script = "src/main.py"
parameters = [
["genetic", "uniform", "generational"],
["genetic", "position", "generational"],
["genetic", "uniform", "stationary"],
["genetic", "position", "stationary"],
["memetic", "all"],
["memetic", "random"],
["memetic", "best"],
]
for dataset in filenames: for dataset in filenames:
print(f"Running on dataset {dataset}") print(f"Running on dataset {dataset}")
greedy_list = [] for index, params in zip(range(4), parameters):
local_list = [] print(f"Running {params} algorithm")
for _ in range(iterations): output_cmd = run(
greedy_cmd = run( [executable, script, dataset, *params], capture_output=True
[executable, script, dataset, "greedy"], capture_output=True
).stdout.splitlines() ).stdout.splitlines()
local_cmd = run( df_list[index] = populate_dataframe(df_list[index], output_cmd, dataset)
[executable, script, dataset, "local"], capture_output=True return df_list
).stdout.splitlines()
greedy_list.append(greedy_cmd)
local_list.append(local_cmd)
greedy, local = populate_dataframes(
greedy, local, greedy_list, local_list, dataset
)
return greedy, local
def export_results(greedy, local): def export_results(df_list):
dataframes = {"Greedy": greedy, "Local search": local} dataframes = {
"Generational uniform genetic": df_list[0],
"Generational position genetic": df_list[1],
"Stationary uniform genetic": df_list[2],
"Stationary position genetic": df_list[3],
"All genes memetic": df_list[4],
"Random genes memetic": df_list[5],
"Best genes memetic": df_list[6],
}
writer = ExcelWriter(path="docs/algorithm-results.xlsx", engine="xlsxwriter") writer = ExcelWriter(path="docs/algorithm-results.xlsx", engine="xlsxwriter")
for name, df in dataframes.items(): for name, df in dataframes.items():
df.to_excel(writer, sheet_name=name, index=False) df.to_excel(writer, sheet_name=name, index=False)
@@ -91,9 +88,9 @@ def export_results(greedy, local):
def main(): def main():
datasets = file_list(path="data/*.txt") datasets = file_list(path="data/*.txt")
greedy, local = create_dataframes() df_list = create_dataframes()
populated_greedy, populated_local = script_execution(datasets, greedy, local) populated_df_list = script_execution(datasets, df_list)
export_results(populated_greedy, populated_local) export_results(populated_df_list)
if __name__ == "__main__": if __name__ == "__main__":

64
src/local_search.py Normal file
View File

@@ -0,0 +1,64 @@
from numpy.random import choice, seed, randint
from pandas import DataFrame
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
)
return row["distance"].values[0]
def compute_distance(element, solution, data):
accumulator = 0
distinct_elements = solution.query(f"point != {element}")
for _, item in distinct_elements.iterrows():
accumulator += get_row_distance(
source=element,
destination=item.point,
data=data,
)
return accumulator
def element_in_dataframe(solution, element):
duplicates = solution.query(f"point == {element}")
return not duplicates.empty
def replace_worst_element(previous, n, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = randint(n)
while element_in_dataframe(solution=solution, element=random_element):
random_element = randint(n)
solution["point"].loc[worst_index] = random_element
solution["distance"].loc[worst_index] = compute_distance(
element=solution["point"].loc[worst_index], solution=solution, data=data
)
return solution
def get_random_solution(previous, n, data):
solution = replace_worst_element(previous, n, data)
while solution["distance"].sum() <= previous["distance"].sum():
solution = replace_worst_element(previous=solution, n=n, data=data)
return solution
def explore_neighbourhood(element, n, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
neighbourhood.append(neighbour)
return neighbour
def local_search(first_solution, n, data):
best_solution = explore_neighbourhood(
element=first_solution, n=n, data=data, max_iterations=5
)
return best_solution

View File

@@ -1,9 +1,46 @@
from genetic_algorithm import * from genetic_algorithm import *
from local_search import local_search from local_search import local_search
from copy import deepcopy
def run_local_search(n, m, data, individual): def get_best_indices(n, population):
pass select_population = deepcopy(population)
best_elements = []
for _ in range(n):
best_index, _ = get_best_elements(select_population)
best_elements.append(best_index)
select_population.pop(best_index)
return best_elements
def replace_elements(current_population, new_population, indices):
for item in indices:
current_population[item] = new_population[item]
return current_population
def run_local_search(n, data, population, mode, probability=0.1):
neighbourhood = []
if mode == "all":
for individual in population:
neighbourhood.append(local_search(individual, n, data))
new_population = neighbourhood
elif mode == "random":
expected_individuals = len(population) * probability
indices = []
for _ in range(expected_individuals):
random_index = randint(len(population))
random_individual = population[random_index]
neighbourhood.append(local_search(random_individual, n, data))
indices.append(random_index)
new_population = replace_elements(population, neighbourhood, indices)
else:
expected_individuals = len(population) * probability
best_indices = get_best_indices(n=expected_individuals, population=population)
for element in best_indices:
neighbourhood.append(local_search(population[element], n, data))
new_population = replace_elements(population, neighbourhood, best_indices)
return new_population
def memetic_algorithm(n, m, data, hybridation, max_iterations=100000): def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
@@ -11,10 +48,10 @@ def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
population = evaluate_population(population, data) population = evaluate_population(population, data)
for i in range(max_iterations): for i in range(max_iterations):
if i % 10 == 0: if i % 10 == 0:
best_index, _ = get_best_elements(population) population = run_local_search(n, data, population, mode=hybridation)
run_local_search(n, m, data, individual=population[best_index]) i += 5
parents = select_parents(population, n, mode="stationary") parents = select_parents(population, n, mode="stationary")
offspring = crossover(mode="uniform", parents=parents, m=m) offspring = crossover(mode="position", parents=parents, m=m)
offspring = mutate(offspring, n, data) offspring = mutate(offspring, n, data)
population = replace_population(population, offspring, mode="stationary") population = replace_population(population, offspring, mode="stationary")
population = evaluate_population(population, data) population = evaluate_population(population, data)