Conclude State of the Art with bioinformatics
This commit is contained in:
@@ -1,49 +1,3 @@
|
||||
@article{10.1093/molbev/msy224,
|
||||
author = {Flagel, Lex and Brandvain, Yaniv and Schrider, Daniel R},
|
||||
title = "{The Unreasonable Effectiveness of Convolutional Neural
|
||||
Networks in Population Genetic Inference}",
|
||||
journal = {Molecular Biology and Evolution},
|
||||
volume = 36,
|
||||
number = 2,
|
||||
pages = {220-238},
|
||||
year = 2018,
|
||||
month = 12,
|
||||
abstract = "{Population-scale genomic data sets have given researchers
|
||||
incredible amounts of information from which to infer
|
||||
evolutionary histories. Concomitant with this flood of data,
|
||||
theoretical and methodological advances have sought to extract
|
||||
information from genomic sequences to infer demographic events
|
||||
such as population size changes and gene flow among closely
|
||||
related populations/species, construct recombination maps, and
|
||||
uncover loci underlying recent adaptation. To date, most
|
||||
methods make use of only one or a few summaries of the input
|
||||
sequences and therefore ignore potentially useful information
|
||||
encoded in the data. The most sophisticated of these
|
||||
approaches involve likelihood calculations, which require
|
||||
theoretical advances for each new problem, and often focus on
|
||||
a single aspect of the data (e.g., only allele frequency
|
||||
information) in the interest of mathematical and computational
|
||||
tractability. Directly interrogating the entirety of the input
|
||||
sequence data in a likelihood-free manner would thus offer a
|
||||
fruitful alternative. Here, we accomplish this by representing
|
||||
DNA sequence alignments as images and using a class of deep
|
||||
learning methods called convolutional neural networks (CNNs)
|
||||
to make population genetic inferences from these images. We
|
||||
apply CNNs to a number of evolutionary questions and find that
|
||||
they frequently match or exceed the accuracy of current
|
||||
methods. Importantly, we show that CNNs perform accurate
|
||||
evolutionary model selection and parameter estimation, even on
|
||||
problems that have not received detailed theoretical
|
||||
treatments. Thus, when applied to population genetic
|
||||
alignments, CNNs are capable of outperforming expert-derived
|
||||
statistical methods and offer a new path forward in cases
|
||||
where no likelihood approach exists.}",
|
||||
issn = {0737-4038},
|
||||
doi = {10.1093/molbev/msy224},
|
||||
url = {https://doi.org/10.1093/molbev/msy224},
|
||||
eprint = {https://academic.oup.com/mbe/article-pdf/36/2/220/27736968/msy224.pdf},
|
||||
}
|
||||
|
||||
@Article{pmid19706884,
|
||||
Author = "Robins, H. S. and Campregher, P. V. and Srivastava, S. K.
|
||||
and Wacher, A. and Turtle, C. J. and Kahsai, O. and Riddell,
|
||||
@@ -1025,6 +979,7 @@
|
||||
year = 2020,
|
||||
month = {Apr}
|
||||
}
|
||||
|
||||
@article{howard17_mobil,
|
||||
author = {Howard, Andrew G. and Zhu, Menglong and Chen, Bo and
|
||||
Kalenichenko, Dmitry and Wang, Weijun and Weyand, Tobias and
|
||||
@@ -1053,6 +1008,7 @@
|
||||
eprint = {1704.04861v1},
|
||||
primaryClass = {cs.CV},
|
||||
}
|
||||
|
||||
@article{ronneberger15_u_net,
|
||||
author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
|
||||
title = {U-Net: Convolutional Networks for Biomedical Image
|
||||
@@ -1083,6 +1039,7 @@
|
||||
eprint = {1505.04597v1},
|
||||
primaryClass = {cs.CV},
|
||||
}
|
||||
|
||||
@article{yuan18_simpl_convol_gener_networ_next_item_recom,
|
||||
author = {Yuan, Fajie and Karatzoglou, Alexandros and Arapakis,
|
||||
Ioannis and Jose, Joemon M and He, Xiangnan},
|
||||
@@ -1119,6 +1076,7 @@
|
||||
eprint = {1808.05163v4},
|
||||
primaryClass = {cs.IR},
|
||||
}
|
||||
|
||||
@article{sadr21_novel_deep_learn_method_textual_sentim_analy,
|
||||
author = {Sadr, Hossein and Solimandarabi, Mozhdeh Nazari and Pedram,
|
||||
Mir Mohsen and Teshnehlab, Mohammad},
|
||||
@@ -1153,3 +1111,157 @@
|
||||
eprint = {2102.11651},
|
||||
primaryClass = {cs.CL},
|
||||
}
|
||||
|
||||
@book{book:930,
|
||||
title = {Bioinformatics: the machine learning approach},
|
||||
author = {Pierre Baldi, Søren Brunak},
|
||||
publisher = {The MIT Press},
|
||||
isbn = {026202506X,9780585444666,9780262025065},
|
||||
year = 2001,
|
||||
series = {Adaptive Computation and Machine Learning},
|
||||
edition = 2,
|
||||
pages = 12,
|
||||
}
|
||||
|
||||
@Article{Schneider_2011,
|
||||
author = {Schneider, Maria V. and Orchard, Sandra},
|
||||
title = {Omics Technologies, Data and Bioinformatics Principles},
|
||||
journal = {Bioinformatics for Omics Data},
|
||||
year = 2011,
|
||||
pages = {3–30},
|
||||
issn = {1940-6029},
|
||||
doi = {10.1007/978-1-61779-027-0_1},
|
||||
url = {http://dx.doi.org/10.1007/978-1-61779-027-0_1},
|
||||
ISBN = 9781617790270,
|
||||
publisher = {Humana Press},
|
||||
}
|
||||
|
||||
@Article{Peri_2020,
|
||||
author = {Peri, Sateesh and Roberts, Sarah and Kreko, Isabella R. and
|
||||
McHan, Lauren B. and Naron, Alexandra and Ram, Archana and
|
||||
Murphy, Rebecca L. and Lyons, Eric and Gregory, Brian D. and
|
||||
Devisetty, Upendra K. and et al.},
|
||||
title = {Read Mapping and Transcript Assembly: A Scalable and
|
||||
High-Throughput Workflow for the Processing and Analysis of
|
||||
Ribonucleic Acid Sequencing Data},
|
||||
journal = {Frontiers in Genetics},
|
||||
year = 2020,
|
||||
volume = 10,
|
||||
month = {Jan},
|
||||
issn = {1664-8021},
|
||||
doi = {10.3389/fgene.2019.01361},
|
||||
url = {http://dx.doi.org/10.3389/fgene.2019.01361},
|
||||
publisher = {Frontiers Media SA}
|
||||
}
|
||||
|
||||
@Article{Zerbino_2008,
|
||||
author = {Zerbino, D. R. and Birney, E.},
|
||||
title = {Velvet: Algorithms for de novo short read assembly using de
|
||||
Bruijn graphs},
|
||||
journal = {Genome Research},
|
||||
year = 2008,
|
||||
volume = 18,
|
||||
number = 5,
|
||||
month = {Feb},
|
||||
pages = {821–829},
|
||||
issn = {1088-9051},
|
||||
doi = {10.1101/gr.074492.107},
|
||||
url = {http://dx.doi.org/10.1101/gr.074492.107},
|
||||
publisher = {Cold Spring Harbor Laboratory}
|
||||
}
|
||||
|
||||
@Article{Spudich_2007,
|
||||
author = {Spudich, G. and Fernandez-Suarez, X. M. and Birney, E.},
|
||||
title = {Genome browsing with Ensembl: a practical overview},
|
||||
journal = {Briefings in Functional Genomics and Proteomics},
|
||||
year = 2007,
|
||||
volume = 6,
|
||||
number = 3,
|
||||
month = {Aug},
|
||||
pages = {202–219},
|
||||
issn = {1477-4062},
|
||||
doi = {10.1093/bfgp/elm025},
|
||||
url = {http://dx.doi.org/10.1093/bfgp/elm025},
|
||||
publisher = {Oxford University Press (OUP)}
|
||||
}
|
||||
|
||||
@Article{Liu_2018,
|
||||
author = {Liu, Yang and Ye, Qing and Wang, Liwei and Peng, Jian},
|
||||
title = {Learning structural motif representations for efficient
|
||||
protein structure search},
|
||||
journal = {Bioinformatics},
|
||||
year = 2018,
|
||||
volume = 34,
|
||||
number = 17,
|
||||
month = {Sep},
|
||||
pages = {i773–i780},
|
||||
issn = {1460-2059},
|
||||
doi = {10.1093/bioinformatics/bty585},
|
||||
url = {http://dx.doi.org/10.1093/bioinformatics/bty585},
|
||||
publisher = {Oxford University Press (OUP)}
|
||||
}
|
||||
|
||||
@Article{Salmela_2011,
|
||||
author = {Salmela, L. and Schroder, J.},
|
||||
title = {Correcting errors in short reads by multiple alignments},
|
||||
journal = {Bioinformatics},
|
||||
year = 2011,
|
||||
volume = 27,
|
||||
number = 11,
|
||||
month = {Apr},
|
||||
pages = {1455–1461},
|
||||
issn = {1460-2059},
|
||||
doi = {10.1093/bioinformatics/btr170},
|
||||
url = {http://dx.doi.org/10.1093/bioinformatics/btr170},
|
||||
publisher = {Oxford University Press (OUP)}
|
||||
}
|
||||
|
||||
@Article{Yang_2012,
|
||||
author = {Yang, X. and Chockalingam, S. P. and Aluru, S.},
|
||||
title = {A survey of error-correction methods for next-generation
|
||||
sequencing},
|
||||
journal = {Briefings in Bioinformatics},
|
||||
year = 2012,
|
||||
volume = 14,
|
||||
number = 1,
|
||||
month = {Apr},
|
||||
pages = {56–66},
|
||||
issn = {1477-4054},
|
||||
doi = {10.1093/bib/bbs015},
|
||||
url = {http://dx.doi.org/10.1093/bib/bbs015},
|
||||
publisher = {Oxford University Press (OUP)}
|
||||
}
|
||||
|
||||
@Article{Kelley_2010,
|
||||
author = {Kelley, David R and Schatz, Michael C and Salzberg, Steven
|
||||
L},
|
||||
title = {Quake: quality-aware detection and correction of sequencing
|
||||
errors},
|
||||
journal = {Genome Biology},
|
||||
year = 2010,
|
||||
volume = 11,
|
||||
number = 11,
|
||||
pages = {R116},
|
||||
issn = {1465-6906},
|
||||
doi = {10.1186/gb-2010-11-11-r116},
|
||||
url = {http://dx.doi.org/10.1186/gb-2010-11-11-r116},
|
||||
publisher = {Springer Science and Business Media LLC}
|
||||
}
|
||||
|
||||
@Article{Zhao_2017,
|
||||
author = {Zhao, Liang and Chen, Qingfeng and Li, Wencui and Jiang,
|
||||
Peng and Wong, Limsoon and Li, Jinyan},
|
||||
title = {MapReduce for accurate error correction of next-generation
|
||||
sequencing data},
|
||||
journal = {Bioinformatics},
|
||||
year = 2017,
|
||||
editor = {Sahinalp, CenkEditor},
|
||||
volume = 33,
|
||||
number = 23,
|
||||
month = {Feb},
|
||||
pages = {3844–3851},
|
||||
issn = {1460-2059},
|
||||
doi = {10.1093/bioinformatics/btx089},
|
||||
url = {http://dx.doi.org/10.1093/bioinformatics/btx089},
|
||||
publisher = {Oxford University Press (OUP)}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user