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Biology Meets Programming: Bioinformatics for Beginners

Week 1

DNA replication

1. Origin of replication (ori)

Locating an ori is key for gene therapy (e.g. viral vectors), to introduce a theraupetic gene.

2. Computational approaches to find ori in Vibrio Cholerae

a) Exercise: find Pattern

We’ll look for the DnaA box sequence, using a sliding window, in that case we will use this

function to find out how many times a sequence appears in the genome:

def

PatternCount(Text, Pattern):

count = 0
for i 1in range(len(Text)-len(Pattern)+1):
if Text[i:i+len(Pattern)] == Pattern:

count = count+l
return count

For the second part, we’re going to calculate the frequency map of the sequences of length

k:
def

def

FrequentWords(Text, k):
words = []
freq = FrequencyMap(Text, k)
m = max(freq.values())
for key 1in freq:

if freqlkey] == m:

words.append (key)

return words

FrequencyMap(Text, k):

freq = {}

n = len(Text)

for i 1in range(n - k + 1):
Pattern = Text[i:1 + k]
freq[Pattern] = 0

for i in range(n - k + 1):
Pattern = Text[i:i + K]
freq[Pattern] += 1

return freq
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b) Exercise: Find the reverse complement of a sequence

We’re going to generate the reverse complement of a sequence, which is the complement
of a sequence, read in the same direction (5’ -> 3’).

def ReverseComplement(Pattern):
Pattern = Reverse(Pattern)
Pattern = Complement(Pattern)
return Pattern

def Reverse(Pattern):
reversed = Pattern[::-1]
return reversed

def Complement(Pattern):
compl = ""
Complement_lettel’s = {IIAH: IITH’ IITII: IIAII, IICII: IIGII’ IIGII: n
Cll}
for char 1in Pattern:
compl += complement_letters[char]
return compl

After using our function on the Vibrio Cholerae’s genome, we realize that some of the fre-
quent k-mers are reverse complements of other frequent ones.

c) Exercise: Find a subsequence within a sequence

We’re going to find the ocurrences of a subsquence inside a sequence, and save the index
of the first letter in the sequence.

def PatternMatching(Pattern, Genome):
positions = []
for i 1in range(len(Genome)-len(Pattern)+1):
if Genome[i:i+len(Pattern)] == Pattern:
positions.append(i)
return positions

We find out that the 9-mers with the highest frequency appear in cluster. There is strong
statistical evidence that our subsequences are DnaA boxes.

3. Computational approaches to find ori in any bacteria

Now that we’re pretty confident about the DnaA boxes sequences that we found, we are going to
check if they are a common pattern in the rest of bacterias. We’re going to find the ocurrences of
the sequences in Thermotoga petrophila:
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def PatternCount(Text, Pattern):
count = 0
for i in range(len(Text)-len(Pattern)+1):
if Text[i:i+len(Pattern)] == Pattern:
count = count+l
return count

We observe that there are no ocurrences of the sequences found in Vibrio Cholerae. We can
conclude that different bacterias have different DnaA boxes.

We have to try another computational approach, find clusters of k-mers repeated in a small
interval.

Week 2
DNA replication (ll)

1. Replication process

The DNA polymerases start replicating while the parent strands are unraveling. On the lagging
strand, the DNA polymerase waits until the replication fork opens around 2000 nucleotides, and
because of that it forms Okazaki fragments. We need 1 primer for the leading strand and 1 primer
per Okazaki fragment for the lagging strand. While the Okazaki fragments are being synthetized,
a DNA ligase starts joining the fragments together.

2. Computational approach to find ori using deamination

As the lagging strand is always waiting for the helicase to go forward, the lagging strand is
mostly in single-stranded configuration, which is more prone to mutations. One frequent form
of mutation is deamination,a process that causes cytosine to convert into thymine. This means
that cytosine is more frequent in half of the genome.

a) Exercise: count the ocurrences of cytosine

We’re going to count the ocurrences of the bases in a genome and include them in a symbol
array.
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def SymbolArray(Genome, symbol):
array = {}
n = len(Genome)
ExtendedGenome = Genome + Genome[0:n//2]
for i 1in range(n):
array[i] = PatternCount(ExtendedGenome[i:i+(n//2)],
symbol)
return array

def PatternCount(Text, Pattern):

count = 0
for i 1in range(len(Text)-len(Pattern)+1):
if Text[i:i+len(Pattern)] == Pattern:

count = count+l
return count

After executing the program, we realize that the algorithm is too inefficient.
b) Exercise: find a better algorithm for the previous exercise
This time, we are going to evaluate an element i+, using the element /.

def FasterSymbolArray(Genome, symbol):
array = {}
n = len(Genome)
ExtendedGenome = Genome + Genome[0:n//2]
array[0] = PatternCount(symbol, Genome[®:n//2])
for i in range(1l, n):
array[i] = array[i-1]
if ExtendedGenome[i-1] == symbol:
array[i] = array[i]-1
if ExtendedGenome[i+(n//2)-1] == symbol:
array[i] = array[i]+1
return array

def PatternCount(Text, Pattern):

count = 0
for i 1in range(len(Text)-len(Pattern)+1):
if Text[i:i+len(Pattern)] == Pattern:

count = count+l
return count

It’s a viable algorithm, with a complexity of O(n) instead of the previous O(n?). In Escherichia
Coli we plotted the result of our program:
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Figure 1: Symbol array for Cytosine in E. Coli Genome]

We can conclude that ori is located around position 4000000, because that’s where the
Cytosine concentration is the lowest, which indicates that the region stays single-stranded
for the longest time.

3. The Skew Diagram

Usually scientists measure the difference between G - C, which is higher on the lagging strand
and lower on the leading strand.

a) Exercise: Synthetize a Skew Array

We’re going to make a Skew Diagram, for that we’ll first need a Skew Array. For that purpose
we wrote:

def SkewArray(Genome):
Skew = []
Skew.append(0)
for i 1in range(0, len(Genome)):

if Genome[i] == "G":
Skew.append (Skew[i] + 1)
elif Genome[i] == "C":
Skew.append(Skew[i] - 1)
else:

Skew. append (Skew[i])
return Skew

We can see the utility of a Skew Diagram looking at the one from Escherichia Coli:

Figure 2: Symbol array for Cytosine in E. Coli Genome]

Ori should be located where the skew is at its minimum value.

b) Exercise: Efficient algorithm for locating ori
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Now that we know more about ori’s skew value, we’re going to construct a better algorithm
tofind it:

def MinimumSkew(Genome):
positions = []
skew = SkewArray(Genome)
minimum = min(skew)
return [i for i in range(0, len(Genome)) 1if skew[i] ==
minimum]

def SkewArray(Genome):
Skew = []
Skew.append(0)
for i 1in range(0, len(Genome)):

if Genome[i] == "G":
Skew.append (Skew[i] + 1)
elif Genome[i] == "C":
Skew.append(Skew[i] - 1)
else:

Skew.append (Skew[i])
return Skew

4. Finding DnaA boxes

When we look for DnaA boxes in the minimal skew region, we can’t find highly repeated 9-mers in
Escherichia Coli. But we found approximate sequences that are similar to our 9-mers and only
differin 1 nucleotide.

a) Exercise: Calculate Hamming distance
The Hamming distance is the number of mismatches between 2 strings.

def HammingDistance(p, q):
count = 0
for i 1in range(0, len(p)):
if p[i] != q[i]:
count += 1
return count

b) Exercise: Find approximate patterns

Now that we have our Hamming distance, we use it to find the approximate sequences:
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def ApproximatePatternMatching(Text, Pattern, d):
positions = []
for i in range(len(Text)-len(Pattern)+1):
if Text[i:i+len(Pattern)] == Pattern:
positions.append(i)
elif HammingDistance(Text[i:i+len(Pattern)], Pattern)
<= d:
positions.append(i)
return positions

def HammingDistance(p, q):
count = 0
for i 1in range(0, len(p)):
if p[i] != q[i]:
count += 1
return count

c) Exercise: Count the approximate patterns
The final part is counting the approximate sequences:

def ApproximatePatternCount(Pattern, Text, d):

count = 0
for i 1in range(len(Text) - len(Pattern) + 1):
if (
Text[i : i + len(Pattern)] == Pattern

or HammingDistance(Text[i : i + len(Pattern)],
Pattern) <= d
):
count += 1
return count

def HammingDistance(p, q):
count = 0
for i 1in range(0, len(p)):
if p[i] != q[i]:
count += 1
return count

After trying out our ApproximatePatternCount in the hypothesized ori region, we find a
frequent k-mer with its reverse complement in Escherichia Coli. We’ve finally found a
computational method to find ori that seems correct.
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Week 3
The circadian clock

Variation in gene expression permits the cell to keep track of time.
1. Computational approaches to find regulatory motifs

a) Exercise: Find the most common nucleotides in each position

We are going to create a t x k Motif Matrix, where t is the k-mer string. In each position,
we’ll insert the most frequent nucleotide, in upper case, and the nucleotide in lower case
(if there’s no popular one). Our goal is to select the most conserved Matrix, i.e. the Matrix
with the most upper case letters. We'll use a 4 x k Count Matrix, one row for each base.

def Count(Motifs):
k = len(Motifs[0])
count = {'A': [0]*k, 'C': [0]*xk, 'G': [0@]xk, 'T': [0] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):

symbol = Motifs[i][j]

count[symbol] [j] += 1
return count

Now that we have a Count Matrix, we will generate a Profile Matrix, which has the frequency
of the nucleotide instead of the count:

def Profile(Motifs):
t = len(Motifs)
profile = Count(Motifs)
for key, v 1in profile.items():
v[:] = [x / t for x in v]
return profile

def Count(Motifs):
k = len(Motifs[0])
count = {'A': [0]*k, 'C': [0]*xk, 'G': [0]xk, 'T': [0] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):

symbol = Motifs[i][j]

count[symbol][j] += 1
return count

b) Exercise: Form the most frequent sequence of nucleotides
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Finally, we can form a Consensus string, to get a candidate regulatory motif:

def Consensus(Motifs):

def

consensus = ""
count = Count(Motifs)
k = len(Motifs[0])
for j 1in range(k):
m =0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus

Count(Motifs):
k = len(Motifs[0])
count = {'A': [0]xk, 'C': [0]*xk, 'G': [0]*k, 'T': [0] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):
symbol = Motifs[i][j]
count[symbol] [j] += 1
return count

After obtaining the Consensus string, all we need to do is obtain the total score of our
selected k-mers:

Amin Kasrou Aouam
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def

def

def

def

Score(Motifs):
score = 0
for i 1in range(len(Motifs)):

score += HammingDistance(Motifs[i], Consensus(Motifs))

return score

Consensus (Motifs):
consensus = ""
count = Count(Motifs)
k = len(Motifs[0])
for j 1in range(k):
m =0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus

Count(Motifs):
k = len(Motifs[0])

count = {'A': [0]*k, 'C': [0]*xk, 'G':

t = len(Motifs)
for i 1in range(t):
for j 1in range(k):
symbol = Motifs[i][j]
count[symbol] [j] += 1
return count

HammingDistance(p, q):
count = 0O
for i in range(0, len(p)):
if p[i] != q[i]:
count += 1
return count

c) Exercise: Find a set of k-mers that minimize the score

[0]xk, 'T': [0] * k}

Applying a brute force approach for this task is not viable, we’ll use a Greedy Algorithm. We

first have to determine the probability of a sequence:

Amin Kasrou Aouam
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def

Pr(Text, Profile):
probability = 1
k = len(Text)
for i in range(k):
probability *= Profile[Text[i]][i]
return probability

We’ll use this function to find the most probable k-mer in a sequence:

def

def

ProfileMostProbableKmer (text, k, profile):

kmer = ""

keys = [HAII, |ICII, llGll, |ITII:|

d = dict(zip(keys,profile))

prob = -1

for i 1in range(len(text)-k+1):

if (Pr((text[i:i+k]), profile) > prob):

prob = Pr(text[i:i+k], profile)
kmer = text[i:i+k]

return kmer

Pr(Text, Profile):
probability = 1
k = len(Text)
for i 1in range(k):
probability *= Profile[Text[i]][i]
return probability

Now we’re finally ready to assemble all the pieces and implement a Greedy Motif Search

Algorithm:

Amin Kasrou Aouam
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def GreedyMotifSearch(Dna, k, t):
BestMotifs = []
for i in range(0, t):
BestMotifs.append(Dna[i][0:k])
n = len(Dna[0])
for i 1in range(n-k+1):
Motifs = []
Motifs.append(Dna[0][i:i+k])
for j 1in range(l, t):
P = Profile(Motifs[0:7])
Motifs.append(ProfileMostProbableKmer(Dnal[j], k, P
))
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
return BestMotifs

def Score(Motifs):
score = 0
for i 1in range(len(Motifs)):
score += HammingDistance(Motifs[i], Consensus(Motifs))
return score

def Consensus(Motifs):
consensus = ""
count = Count(Motifs)
k = len(Motifs[0])
for j 1in range(k):
m =0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus

def Count(Motifs):
k = len(Motifs[0])
count = {'A': [0]xk, 'C': [0]*k, 'G': [0]*k, 'T': [0] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):

symbol = Motifs[i][j]

count[symbol] [j] += 1
return count

def HammingDistance(p, q):
count = 0
for i in range(0, len(p)):
if p[i] != q[i]:
count += 1
return count 14
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d) Motifs in tuberculosis

Tuberculosis is an infectious disease, caused by a bacteria called Mycobacterium tubercu-
losis. The bacteria can stay latent in the host for decades, in hypoxic environments. Our
Greedy Algorithm can help us identify a motif that might be involved in the process.

The transcription factor behind this behaviour is DosR, we’ll identify the binding sites:
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def

def

def

def

def

GreedyMotifSearch(Dna, k, t):
BestMotifs = []
for i in range(0, t):
BestMotifs.append(Dna[i][0:k])
n = len(Dna[0])
for i 1in range(n - k + 1):
Motifs = []
Motifs.append(Dna[0][i : i + k])
for j 1in range(l, t):
P = Profile(Motifs[0:7])
Motifs.append(ProfileMostProbableKmer(Dnal[j], k, P
))
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
return BestMotifs

Score(Motifs):
score = 0
for i 1in range(len(Motifs)):
score += HammingDistance(Motifs[i], Consensus(Motifs))
return score

Consensus(Motifs):
consensus = ""
count = Count(Motifs)
k = len(Motifs[0])
for j 1in range(k):
m =0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus

Count(Motifs):
k = len(Motifs[0])
count = {"A": [0] * k, "C": [0] * k, "G": [0] * k, "T":
[0] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):
symbol = Motifs[i][j]
count[symbol] [j] += 1
return count

HammingDistance(p, q):
count = 0
for i in range(0, len(p)):

Amin Kasrou Aouam
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Our algorithm is pretty fast, but it’s not optimal, and that’s just a characteristic of Greedy
Algorithms, they trade optimality for speed.

Week 4
The circadian clock (1)

The French mathematician Laplace estimated the probability that the sun will not raise tomorrow, this
approach plays an important role in statistics, we cannot simplify the probability of a low-probability
event to zero.

1. Motif finding with pseudocounts

In order to account for this problem, bioinformaticians often substitute zeroes with small num-
bers called pseudocounts.

a) Exercise: Create a count matrix with pseudocounts

We are going to generate the count matrix, while adding 1to each value as a pseudocount.
As a starting point we’ll use our Count(Motifs) function, and we’ll tweak it to achieve our
objective.

def CountWithPseudocounts(Motifs):
k = len(Motifs[0])
count = {'A': [1]xk, 'C': [1]1*xk, 'G': [1]xk, 'T': [1] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):
symbol = Motifs[i][j]
count[symbol] [j] += 1
return count

We only modified the third line of the function, by starting the count at 1instead of 0. With
this simple adjustement, we have solved the problem.

b) Exercise: Create a profile matrix with pseudocounts

Now that we have our count matrix, we can generate a profile matrix. We’ll adjust our
Profile(Motifs) function for this purpose.
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def

def

ProfileWithPseudocounts(Motifs):
t = len(Motifs) + 4
profile = CountWithPseudocounts(Motifs)
for key, v in profile.items():
vi:] = [x / t for x 1in v]
return profile

CountWithPseudocounts (Motifs):
k = len(Motifs[0])
count = {'A': [1]xk, 'C': [1]xk, 'G': [1]xk, 'T': [1] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):
symbol = Motifs[i][j]
count[symbol][j] += 1
return count

We have only modified the value of t, adding 4 because the total sum of each column is

different. Now that we have pseudocounts, we initialize each cell to 1, and because we have
4 rows, the total sum is now t+4;

c) Exercise: An improved Greedy Motif Search algorithm

We have all the required functions to construct a Greedy Motif Search algorithm with pseu-
docounts. As with all the previous exercises, we’ll start with our GreedyMotifSearch(Motifs)

function.

Amin Kasrou Aouam
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def

def

def

def

def

GreedyMotifSearchWithPseudocounts(Dna, k, t):
BestMotifs = []
for i in range(0, t):
BestMotifs.append(Dna[i][0:k])
n = len(Dna[0])
for i 1in range(n - k + 1):
Motifs = []
Motifs.append(Dna[0][i : i + k])
for j 1in range(l, t):
P = ProfileWithPseudocounts(Motifs[0:j])
Motifs.append(ProfileMostProbableKmer(Dnal[j], k, P
))
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
return BestMotifs

ProfileWithPseudocounts(Motifs):
t = len(Motifs) + 4
profile = CountWithPseudocounts(Motifs)
for key, v in profile.items():
vi:] = [x / t for x 1in v]
return profile

CountWithPseudocounts (Motifs):
k = len(Motifs[0])
count = {'A': [1]xk, 'C': [1]xk, 'G': [1]xk, 'T': [1] * k}
t = len(Motifs)
for i 1in range(t):
for j in range(k):

symbol = Motifs[i][j]

count[symbol][j] += 1
return count

Score(Motifs):
score = 0
for i 1in range(len(Motifs)):
score += HammingDistance(Motifs[i], Consensus(Motifs))
return score

Consensus(Motifs):
consensus = """
count = Count(Motifs)
k = len(Motifs[0])
for j 1in range(k):
m = 0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol

Amin Kasrou Aouam
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return consensus

Count(Motifs):
k = len(Motifs[0])
count = {"A": [0] * k, "C": [0] * k, "G": [0] » k, "T":
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All we had to do was replace the function call Profile(Motifs) with ProfileWithPseudo-
counts(Motif).

The performance of the new algorithm is better, but we are still not satisfied. We are going
to try a different motif finding algorithm.

2. Randomized Motif Search

A randomized algorithm sounds like a very bad idea, luck doesn’t seem to be a good scientific
asset. Well, as nonintuitive as it might sound they are used in many cases.

We will consider Monte Carlo algorithms for our use case.

a) Exercise: Generate the most probable k-mers

We’ll start off our pipeline by crafting a function that outputs the most probable k-mers
using a profile matrix, and a DNA sequence.

We’ll reuse our ProfileMostProbableKmer and Pr functions:

def Motifs(Profile, Dna):
kmer_1list = []
for sequence 1in Dna:
kmer = ProfileMostProbableKmer (text=sequence, k=len(
Profile), profile=Profile)
kmer_1list.append(kmer)
return kmer_list

def ProfileMostProbableKmer (text, k, profile):

kmer = nmn

keys - [nAu, ”C”, ”G", "T"]

d = dict(zip(keys,profile))

prob = -1

for i 1in range(len(text)-k+1):

if (Pr((text[i:i+k]), profile) > prob):

prob = Pr(text[i:i+k], profile)
kmer = text[i:i+k]

return kmer

def Pr(Text, Profile):
probability = 1
k = len(Text)
for i 1in range(k):
probability *= Profile[Text[i]][i]
return probability

We obtain a list of the most probable k-mer for each DNA sequence.
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A common approach to is starting from a collection of randomly chosen k-mers Motifs,
construct a profile matrix and use this matrix to generate a new collection of k-mers.

We’ll iterate many times, hoping to get a better result and seeing if the score keeps improv-
ing. This is basically what a Randomized Motif Search does, now that we understand the
underlying mechanism, we’ll implement a random number generator.

b) Exercise: Implement a random k-mer generator

In order to implement our random k-mer generator, we need a way to generate random
integers. Each integer will be used as the index for a character in our sequences.

Python’s random module is our choice of tool for this exercise, specifically the randint

function.

import random

def RandomMotifs(Dna, k, t):

random_motifs = []
t = len(Dna)
1 = len(Dnal[0])
for i 1in range(t):
random_index = random.randint(1l, 1-k)
random_motifs.append(Dnal[i][random_index:random_index+
k1)

return random_motifs

We are ready to develop our Randomized Search algorithm, we just need to iterate over the
generation of random motifs until we stop getting good results.

c) Exercise: Random Motif Search algorithm

Finally, we only have to assemble our functions to iterate through the random motifs while
the score keeps improving.

Amin Kasrou Aouam
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import random

def

def

def

def

def

RandomizedMotifSearch(Dna, k, t):
M = RandomMotifs(Dna, k, t)
BestMotifs = M

while True:

Profile = ProfileWithPseudocounts(M)

M = Motifs(Profile, Dna)

if Score(M) < Score(BestMotifs):
BestMotifs = M

else:
return BestMotifs

RandomMotifs(Dna, k, t):
random_motifs = []

t = len(Dna)

1 = len(Dna[0])

for i 1in range(t):

random_index = random.randint(1l, 1-k)

random_motifs.append(Dna[i][random_index:random_index+

k1)

return random_motifs

Motifs(Profile, Dna):
kmer_list = []
for sequence 1in Dna:

kmer = ProfileMostProbableKmer (text=sequence, k=1len(

Profile["A"]), profile=Profile)

kmer_T1list.append(kmer)
return kmer_Tlist

ProfileMostProbableKmer (text, k, profile):

kmer = ""

keys = I:”All’ HC", ”GH’ HT"]

d = dict(zip(keys,profile))
prob = -1

for i 1in range(len(text)-k+1):

if (Pr((text[i:i+k]), profile) > prob):
prob = Pr(text[i:i+k], profile)

kmer = text[i:i+k]
return kmer

Pr(Text, Profile):
probability = 1

k = len(Text)

for i 1in range(k):

probability *= Profile[Text[i]][i]

return probability

Amin Kasrou Aouam
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ProfileWithPseudocounts(Motifs):
t = len(Motifs) + 4

profile = CountWithPseudocounts(Motifs)

for key, v in profile.items():
v[i:] = [x / t for x in V]

22
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Each time that we execute our algorithm, we’ll get a different solution. We’re going to do
an experiment by running our algorithm multiple times and checking the final score.

d) Exercise: Evaluate performance of the algorithm

In order to evaluate the performance of this algorithm, we are going to run 100 iterations
while keeping the motif with the greatest motif.
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import random

2 Dna = ["
GCGCCCCGCCCGGACAGCCATGCGCTAACCCTGGCTTCGATGGCGCCGGCTCAGTTAGGG
"

3 "
CCGATCGGCATCACTATCGGTCCTGCGGCCGCCCATAGCGCTATATCCGGCTGGTGAAAT
"

4 "
ACCGTCGATGTGCCCGGTCGCGCCGCGTCCACCTCGGTCATCGACCCCACGATGAGGACG
" 5

5 "
GGGTCAGGTATATTTATCGCACACTTGGGCACATGACACACAAGCGCCAGAATCCCGGAC
" ,

6 "
GTAGGTCAAACCGGGTGTACATACCCGCTCAATCGCCCAGCACTTCGGGCAGATCACCGG
" 5

7 "
CCGCTGGCGACGCTGTTCGCCGGCAGCGTGCGTGACGACTTCGAGCTGCCCGACTACACC
"

8 n
GGCCAACTGCACCGCGCTCTTGATGACATCGGTGGTCACCATGGTGTCCGGCATGATCAA
"

9 "
GTACATGTCCAGAGCGAGCCTCAGCTTCTGCGCAGCGACGGAAACTGCCACACTCAAAGC
" 5

-IO n
GGCAGCTGTCGGCAACTGTAAGCCATTTCTGGGACTTTGCTGTGAAAAGCTGGGCGATGG
" ’

‘H n
TCAGCACCATGACCGCCTGGCCACCAATCGCCCGTAACAAGCGGGACGTCCGCGACGACG
ll]

2t = 10

13 k = 15

4N = 100

15

16

17 def RandomizedMotifSearch(Dna, k, t):

18 M = RandomMotifs(Dna, k, t)

19 BestMotifs = M

20 while True:

21 Profile = ProfileWithPseudocounts(M)

22 M = Motifs(Profile, Dna)

23 if Score(M) < Score(BestMotifs):

24 BestMotifs = M

25 else:

26 return BestMotifs

27

28

29 def RandomMotifs(Dna, k, t):

30 random_motifs = []

31 t = len(Dna)

32 1 = len(Dna[0])

33 for i 1in range(t):

34 random_index = random.randint(1l, 1-k)

Amin Kasromzeien rania@_motifs.append(Dna[i][random_index:random_indexj4

36 return random_motifs

37

38

39 def Motifs(Profile, Dna):

40 kmer_list = []

CCGGAAGTCCC

CAATTGACAAC

CCATCGGCCGC

CGAACCGAGCA(

GTTTCCCCGGT.

TGGTGACCACC

CCTCCGCTGTT!

CTACTGGGCGC,

TTGTGGACCTG

CGTGCGCTAGC!
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As we can see, this algorithm finds a pretty good solution.

3. Gibbs Sampling

Thanks to our previous experiments, we now consider random search algorithms as adequate
tools for our problem. The caveat of our algorithm is that it discards all previous motifs in each
iteration.

A more cautious alternative is Gibbs Sampling, which discards a single k-mer from the current
set of motifs at each iteration.

a) Exercise: Normalize the probabilities

The algorithm chooses randomly at each iteration which k-mer will be dropped, and it
chooses the replacement of that k-mer.

We use pseudocounts to generate the next profile matrix, which gives us some extravagant
probabilities. We need to normalize them, so their sum equals 1.

def Normalize(Probabilities):
d = {}
for k,v in Probabilities.items():
d[k] = Probabilities[k]/sum(Probabilities.values())
return d

b) Exercise: Simulate rolling a die
Now that our probabilities are normalized, we can focus on simulating a weighted die.

import random

def WeightedDie(Probabilities):
count = 0
p = random.uniform(0,1)
for k,v in Probabilities.items():
count = count+v
if p < count:
return k

Our function returns a single element, in the next step we’ll make it a subroutine of a larger
function.

c) Exercise: Generate a k-mer

We have all the necessary tools to generate a k-mer based on the profile matrix.
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import random

def Pr(Text, Profile):
probability = 1
k = len(Text)
for i 1in range(k):
probability *= Profile[Text[i]][i]
return probability

def Normalize(Probabilities):
d = {}
for k,v in Probabilities.items():
d[k] = Probabilities[k]/sum(Probabilities.values())
return d

def WeightedDie(Probabilities):
count = 0
p = random.uniform(0,1)
for k,v in Probabilities.items():
count = count+v
if p < count:
return k

def ProfileGeneratedString(Text, profile, k):
n = len(Text)
probabilities = {}
for i 1in range(0,n-k+1):
probabilities[Text[i:i+k]] = Pr(Text[i:i+k], profile)
probabilities = Normalize(probabilities)
return WeightedDie(probabilities)

d) Exercise: Implement the Gibbs Sampling algorithm

Finally, we can implement the Gibbs Sampling algorithm:
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import random

def GibbsSampler(Dna, k, t, N):
Motifs = RandomMotifs(Dna, k ,t)
BestMotifs = Motifs[:]
for i in range(N):
p = random.randint(0,t-1)
del Motifs[p]
profile = ProfileWithPseudocounts(Motifs)
Motifs.insert(p, ProfileGeneratedString(Dnalp],
profile, k))
if Score(Motifs) < Score(BestMotifs):
BestMotifs = Motifs
return BestMotifs

def RandomMotifs(Dna, k, t):

random_motifs = []

t = len(Dna)

1 = len(Dnal0])

for i 1in range(t):
random_index = random.randint(1l, 1-k)
random_motifs.append(Dna[i][random_index:random_index+

k1)

return random_motifs

def ProfileWithPseudocounts(Motifs):
t = len(Motifs) + 4
profile = CountWithPseudocounts(Motifs)
for key, v in profile.items():
v[:] = [x / t for x 1in v]
return profile

def CountWithPseudocounts(Motifs):
k = len(Motifs[0])
count = {'A': [1]xk, 'C': [1]*xk, 'G': [1]*k, 'T': [1] * k}
t = len(Motifs)
for i 1in range(t):
for j 1in range(k):

symbol = Motifs[i][j]

count[symbol][j] += 1
return count

def Pr(Text, Profile):
probability = 1
k = len(Text)
for i 1in range(k):
probability *= Profile[Text[i]][i]
return probability

AnﬂnKasnnJAougﬁF Zotmikize(Probabilities): 27
for k,v in Probabilities.items():
d[k] = Probabilities[k]/sum(Probabilities.values())
return d
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Vocabulary

+ k-mer: subsquences of length k in a biological sequence
« Frequency map: sequence —>frequency of the sequence

Amin Kasrou Aouam 28
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