6 Commits
0.1.1 ... 0.2.1

4 changed files with 81 additions and 64 deletions

68
README.md Normal file
View File

@@ -0,0 +1,68 @@
# locigenesis
locigenesis is a tool that generates a human T-cell receptor (TCR), runs
it through a sequence reader simulation tool and extracts CDR3.
The goal of this project is to generate both HVR sequences with and
without sequencing errors, in order to create datasets for a Machine
Learning algorithm.
## Technologies
- [immuneSIM](https://github.com/GreiffLab/immuneSIM/): in silico
generation of human and mouse BCR and TCR repertoires
- [CuReSim](http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/):
read simulator that mimics Ion Torrent sequencing
## Installation
This project uses [Nix](https://nixos.org/) to ensure reproducible
builds.
1. Install Nix (compatible with MacOS, Linux and
[WSL](https://docs.microsoft.com/en-us/windows/wsl/about)):
```bash
curl -L https://nixos.org/nix/install | sh
```
2. Clone the repository:
```bash
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
```
3. Change the working directory to the project:
```bash
cd locigenesis
```
4. Enter the nix-shell:
```bash
nix-shell
```
After running these commands, you will find yourself in a shell that
contains all the needed dependencies.
## Usage
An execution script that accepts 2 parameters is provided, the following
command invokes it:
```bash
./generation.sh <number of sequences> <number of reads>
```
- \<number of sequences\>: an integer that specifies the number of
different sequences to generate
- \<number of reads\>: an integer that specifies the number of reads
to perform on each sequence
The script will generate 2 files under the data directory:
|HVR.fastq | curesim-HVR.fastq |
|:----:|:-----:|
|Contains the original CDR3 sequence|Contains CDR3 after the read simulation, with sequencing errors |

View File

@@ -1,56 +0,0 @@
* locigenesis
locigenesis is a tool that generates a human T-cell receptor (TCR), runs it through a sequence reader simulation tool and extracts CDR3.
The goal of this project is to generate both HVR sequences with and without sequencing errors, in order to create datasets for a Machine Learning algorithm.
** Technologies
- [[https://github.com/GreiffLab/immuneSIM/][immuneSIM]]: in silico generation of human and mouse BCR and TCR repertoires
- [[http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/][CuReSim]]: read simulator that mimics Ion Torrent sequencing
** Installation
This project uses [[https://nixos.org/][Nix]] to ensure reproducible builds.
1. Install Nix (compatible with MacOS, Linux and [[https://docs.microsoft.com/en-us/windows/wsl/about][WSL]]):
#+begin_src shell
curl -L https://nixos.org/nix/install | sh
#+end_src
1. Clone the repository:
#+begin_src shell
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
#+end_src
3. Change the working directory to the project:
#+begin_src shell
cd locigenesis
#+end_src
4. Enter the nix-shell:
#+begin_src shell
nix-shell
#+end_src
After running these commands, you will find yourself in a shell that contains all the needed dependencies.
** Usage
An execution script that accepts 2 parameters is provided, the following command invokes it:
#+begin_src shell
./generation.sh <number of sequences> <number of reads>
#+end_src
- <number of sequences>: an integer that specifies the number of different sequences to generate
- <number of reads>: an integer that specifies the number of reads to perform on each sequence
The script will generate 2 files under the data directory:
| HVR.fastq | Contains the original CDR3 sequence |
| CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |

View File

@@ -17,10 +17,10 @@
"homepage": "", "homepage": "",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "a565a2165ab6e195d7c105a8416b8f4b4d0349a4", "rev": "359e6542e1d41eb18df55c82bdb08bf738fae2cf",
"sha256": "1x90qm533lh8xh172rqfcj3pwg8imyx650xgr41rqppmm6fli4w1", "sha256": "05v28njaas9l26ibc6vy6imvy7grbkli32bmv0n32x6x9cf68gf9",
"type": "tarball", "type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a565a2165ab6e195d7c105a8416b8f4b4d0349a4.tar.gz", "url": "https://github.com/NixOS/nixpkgs/archive/359e6542e1d41eb18df55c82bdb08bf738fae2cf.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz" "url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
} }
} }

View File

@@ -34,7 +34,11 @@ parse_metadata <- function(metadata) {
#' @return A \code{character} containing the gene sequence #' @return A \code{character} containing the gene sequence
match_id_sequence <- function(names, vdj_segments, id) { match_id_sequence <- function(names, vdj_segments, id) {
matches <- grep(names, pattern = id) matches <- grep(names, pattern = id)
row <- matches[1] if(id == "TRBJ2-2"){
row <- matches[2]
} else {
row <- matches[1]
}
return(as.character(vdj_segments[row])) return(as.character(vdj_segments[row]))
} }
@@ -106,8 +110,9 @@ get_cys_coordinates <- function(alignment) {
insertion <- unlist(Biostrings::insertion(alignment)) insertion <- unlist(Biostrings::insertion(alignment))
deletion <- unlist(Biostrings::deletion(alignment)) deletion <- unlist(Biostrings::deletion(alignment))
delta_coordinates <- handle_indels(insertion, deletion, cys, alignment) delta_coordinates <- handle_indels(insertion, deletion, cys, alignment)
cys_start <- cys$start + delta_coordinates$start read_start <- unlist(start(Biostrings::Views(alignment)))
cys_end <- cys$end + delta_coordinates$end cys_start <- cys$start + delta_coordinates$start + read_start - 1
cys_end <- cys$end + delta_coordinates$end + read_start
return(list("start" = cys_start, "end" = cys_end)) return(list("start" = cys_start, "end" = cys_end))
} }
@@ -126,7 +131,7 @@ get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
) )
cys_coordinates <- parallel::mclapply(v_alignment, FUN = get_cys_coordinates) cys_coordinates <- parallel::mclapply(v_alignment, FUN = get_cys_coordinates)
cys_df <- as.data.frame(do.call(rbind, cys_coordinates)) cys_df <- as.data.frame(do.call(rbind, cys_coordinates))
remaining <- Biostrings::subseq(sequences, start = unlist(cys_df$end)) remaining <- Biostrings::subseq(sequences, start = unlist(cys_df$end) + 1)
j_alignment <- parallel::mcmapply(remaining, j_alignment <- parallel::mcmapply(remaining,
df$j_seq, df$j_seq,
FUN = align_sequence, FUN = align_sequence,
@@ -145,4 +150,4 @@ get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
data <- parse_data(file = "data/curesim_sequence.fastq") data <- parse_data(file = "data/curesim_sequence.fastq")
hvr <- get_hvr_sequences(sequences = data[[1]], vdj_segments = data[[2]]) hvr <- get_hvr_sequences(sequences = data[[1]], vdj_segments = data[[2]])
Biostrings::writeXStringSet(hvr, "data/CuReSim-HVR.fastq", format = "fastq") Biostrings::writeXStringSet(hvr, "data/curesim-HVR.fastq", format = "fastq")