1 Commits

Author SHA1 Message Date
e4e2b7c9b8 Remove redundant directories 2021-05-04 11:12:47 +02:00
3 changed files with 0 additions and 62 deletions

0
data/.gitkeep Normal file
View File

View File

@@ -1,10 +1,6 @@
library(Biostrings)
library(parallel)
#' Import and process the TCR and VJ sequences
#'
#' @param file A file path with the sequences after applying a read simulator
#' @return A \code{list} with the TCR sequences and VJ sequences
parse_data <- function(file) {
reversed_sequences <- Biostrings::readQualityScaledDNAStringSet(file)
sequences <- Biostrings::reverseComplement(reversed_sequences)
@@ -15,10 +11,6 @@ parse_data <- function(file) {
return(list(sequences, vj_segments))
}
#' Extracts the VJ metadata from the sequences read identifier
#'
#' @param metadata The read identifier of a sequence
#' @return A \code{list} with the V and J gene identifier
parse_metadata <- function(metadata) {
id_elements <- unlist(strsplit(metadata, split = " "))
v_identifier <- id_elements[2]
@@ -26,24 +18,12 @@ parse_metadata <- function(metadata) {
return(list(v_id = v_identifier, j_id = j_identifier))
}
#' Fetches the sequence that matches the VJ gene identifier
#'
#' @param names The names of the VJ sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @param id The read identifier of a sequence
#' @return A \code{character} containing the gene sequence
match_id_sequence <- function(names, vdj_segments, id) {
matches <- grep(names, pattern = id)
row <- matches[1]
return(as.character(vdj_segments[row]))
}
#' Gets the V and J sequences for a particular read identifier
#'
#' @param metadata The read identifier of a sequence
#' @param names The names of the VJ sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @return A \code{list} with the V and J sequences
get_vj_sequence <- function(metadata, names, vdj_segments) {
identifiers <- parse_metadata(metadata)
v_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["v_id"])
@@ -51,11 +31,6 @@ get_vj_sequence <- function(metadata, names, vdj_segments) {
return(list(v_seq = v_sequence, j_seq = j_sequence))
}
#' Obtains the VJ sequences for all the TCR sequences
#'
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @return A \code{data.frame} with the V and J sequences
fetch_vj_sequences <- function(sequences, vdj_segments) {
vj_sequences <- sapply(names(sequences),
names(vdj_segments),
@@ -66,11 +41,6 @@ fetch_vj_sequences <- function(sequences, vdj_segments) {
return(results)
}
#' Perform a pairwise alignment of a sequence with the canonical V or J sequence
#'
#' @param sequence A \code{DNAString} containing the TCR sequences
#' @param vdj_segment A \code{DNAString} containing the V or J sequence
#' @return A \code{PairwiseAlignments}
align_sequence <- function(sequence, vdj_segment) {
return(Biostrings::pairwiseAlignment(
subject = sequence,
@@ -80,13 +50,6 @@ align_sequence <- function(sequence, vdj_segment) {
))
}
#' Computes the coordinate shift of the Cysteine due to indels
#'
#' @param insertion An \code{IRanges} containing the insertions
#' @param deletion An \code{IRanges} containing the deletions
#' @param cys A \code{list} with the Cysteine coordinates
#' @param alignment A \code{PairwiseAlignments}
#' @return A \code{list} with the delta of the Cysteine coordinates
handle_indels <- function(insertion, deletion, cys, alignment) {
ins_start <- sum(Biostrings::width(deletion[start(deletion) <= cys$start]))
ins_end <- sum(Biostrings::width(deletion[end(deletion) <= cys$end]))
@@ -97,10 +60,6 @@ handle_indels <- function(insertion, deletion, cys, alignment) {
return(list("start" = ins_start - gaps, "end" = ins_end - gaps))
}
#' Find the coordinates of the first Cysteine of the HVR
#'
#' @param alignment A \code{PairwiseAlignments}
#' @return A \code{list} with the Cysteine coordinates
get_cys_coordinates <- function(alignment) {
cys <- list("start" = 310, "end" = 312)
insertion <- unlist(Biostrings::insertion(alignment))
@@ -111,12 +70,6 @@ get_cys_coordinates <- function(alignment) {
return(list("start" = cys_start, "end" = cys_end))
}
#' Delimit the hypervariable region (HVR) for each TCR sequence
#'
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @param cores Number of cores to apply multiprocessing
#' @return A \code{QualityScaledDNAStringSet} containing the HVR
get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
df <- fetch_vj_sequences(sequences, vdj_segments)
v_alignment <- parallel::mcmapply(sequences,

View File

@@ -1,10 +1,6 @@
library(immuneSIM)
library(Biostrings)
#' Generate the beta chain of a human T-cell receptor (TCR)
#'
#' @param number_of_sequences Number of different sequences to generate
#' @return A \code{data.frame} with the sequences, V and J genes and CDR3
generate_repertoire <- function(number_of_sequences) {
return(immuneSIM(
number_of_seqs = number_of_sequences,
@@ -14,9 +10,6 @@ generate_repertoire <- function(number_of_sequences) {
))
}
#' Saves the sequences and CDR3 to FASTQ files
#'
#' @param data A \code{data.frame} with the preprocessed TCR sequences and CDR3
save_data <- function(data) {
Biostrings::writeXStringSet(data$sequence,
"data/sequence.fastq",
@@ -25,11 +18,6 @@ save_data <- function(data) {
Biostrings::writeXStringSet(data$junction, "data/HVR.fastq", format = "fastq")
}
#' Applies the reverse complement and amplifies the number of sequences
#'
#' @param data A \code{data.frame} containing the TCR sequences and CDR3
#' @param reads Number of times to amplify each sequence
#' @return A \code{data.frame} with reverse complement sequences and VJ metadata
process_data <- function(data, reads) {
dna_sequence <- Biostrings::DNAStringSet(data$sequence)
data$sequence <- Biostrings::reverseComplement(dna_sequence)
@@ -40,9 +28,6 @@ process_data <- function(data, reads) {
return(amplified_data)
}
#' Checks the number of command line arguments and captures them
#'
#' @return A \code{vector} containing the command line arguments
parse_cli_arguments <- function() {
args <- commandArgs(trailingOnly = TRUE)
if (length(args) != 2) {