2 Commits

Author SHA1 Message Date
eee25f7eb3 Update gitignore 2021-03-23 19:34:46 +01:00
f6ad675cc4 Save vdj alignment sequences to a CSV 2021-03-23 19:33:32 +01:00
13 changed files with 109 additions and 296 deletions

2
.gitignore vendored
View File

@@ -1 +1,3 @@
*.csv
*.fasta
*.fastq *.fastq

View File

@@ -1,68 +0,0 @@
# locigenesis
locigenesis is a tool that generates a human T-cell receptor (TCR), runs
it through a sequence reader simulation tool and extracts CDR3.
The goal of this project is to generate both HVR sequences with and
without sequencing errors, in order to create datasets for a Machine
Learning algorithm.
## Technologies
- [immuneSIM](https://github.com/GreiffLab/immuneSIM/): in silico
generation of human and mouse BCR and TCR repertoires
- [CuReSim](http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/):
read simulator that mimics Ion Torrent sequencing
## Installation
This project uses [Nix](https://nixos.org/) to ensure reproducible
builds.
1. Install Nix (compatible with MacOS, Linux and
[WSL](https://docs.microsoft.com/en-us/windows/wsl/about)):
```bash
curl -L https://nixos.org/nix/install | sh
```
2. Clone the repository:
```bash
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
```
3. Change the working directory to the project:
```bash
cd locigenesis
```
4. Enter the nix-shell:
```bash
nix-shell
```
After running these commands, you will find yourself in a shell that
contains all the needed dependencies.
## Usage
An execution script that accepts 2 parameters is provided, the following
command invokes it:
```bash
./generation.sh <number of sequences> <number of reads>
```
- \<number of sequences\>: an integer that specifies the number of
different sequences to generate
- \<number of reads\>: an integer that specifies the number of reads
to perform on each sequence
The script will generate 2 files under the data directory:
|HVR.fastq | curesim-HVR.fastq |
|:----:|:-----:|
|Contains the original CDR3 sequence|Contains CDR3 after the read simulation, with sequencing errors |

3
README.org Normal file
View File

@@ -0,0 +1,3 @@
* locigenesis
locigenesis is a tool that generates an immune repertoire and runs it through a sequence reader simulation tool, to generate sequencing errors.

0
data/.gitkeep Normal file
View File

Binary file not shown.

0
data/reports/.gitkeep Normal file
View File

Binary file not shown.

46
docs/notebook.org Normal file
View File

@@ -0,0 +1,46 @@
#+TITLE: locigenesis
#+AUTHOR: Amin Kasrou Aouam
#+DATE: 2021-03-10
* Sequence alignment
Our generated sequences contain the full VJ region, but we are only interested in the CDR3 (Complementarity-determining region). We will proceed by delimiting CDR3, using the known sequences of V and J.
#+begin_src R :results value silent
v_segments <- readRDS("data/v_segments.rds")
j_segments <- readRDS("data/j_segments_phe.rds")
#+end_src
#+begin_src R
print(v_segments)
print(j_segments)
#+end_src
#+RESULTS:
#+begin_example
A DNAStringSet instance of length 147
width seq names
[1] 326 GATACTGGAATTACCCAGACAC...ATCTCTGCACCAGCAGCCAAGA TRBV1*01_P
[2] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*01_F
[3] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*02_F
[4] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*01_F
[5] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*02_F
... ... ...
[143] 324 GATACTGGAGTCTCCCAGAACC...GTATCTCTGTGCCAGCACGTTG TRBV7-9*06_(F)
[144] 323 .........................TGTATCTCTGTGCCAGCAGCAG TRBV7-9*07_(F)
[145] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*01_F
[146] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*02_F
[147] 321 GATTCTGGAGTCACACAAACCC...TTTGTATTTCTGTGCCAGCAGC TRBV9*03_(F)
A DNAStringSet instance of length 16
width seq names
[1] 32 TGGGCGTCTGGGCGGAGGACTCCTGGTTCTGG TRBJ2-2P*01_ORF
[2] 31 TTTGGAGAGGGAAGTTGGCTCACTGTTGTAG TRBJ1-3*01_F
[3] 31 TTTGGTGATGGGACTCGACTCTCCATCCTAG TRBJ1-5*01_F
[4] 31 TTTGGCAGTGGAACCCAGCTCTCTGTCTTGG TRBJ1-4*01_F
[5] 31 TTCGGTTCGGGGACCAGGTTAACCGTTGTAG TRBJ1-2*01_F
... ... ...
[12] 31 TTTGGCCCAGGCACCCGGCTGACAGTGCTCG TRBJ2-3*01_F
[13] 31 TTCGGGCCAGGCACGCGGCTCCTGGTGCTCG TRBJ2-5*01_F
[14] 31 TTCGGGCCAGGGACACGGCTCACCGTGCTAG TRBJ2-1*01_F
[15] 31 TTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*01_F
[16] 31 GTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*02_ORF
#+end_example

View File

@@ -1,7 +1,7 @@
#!/bin/sh #!/bin/sh
usage() { usage() {
echo "usage: generation.sh <number of sequences> <number of reads>" echo "usage: generation.sh <number of sequences> <sequencing runs>"
exit 1 exit 1
} }
@@ -10,13 +10,15 @@ if [ $# != 2 ]; then
fi fi
sequences=$1 sequences=$1
number_of_reads=$2 sequencing_runs=$2
read_mean_size=350
read_variance_size=0.0
data_directory="data/" data_directory="data/"
fasta=".fasta"
fastq=".fastq" fastq=".fastq"
filename="sequence" filename="sequence"
prefix="curesim_" prefix="curesim_"
Rscript src/repertoire.r "$sequences" "$number_of_reads" && Rscript src/repertoire.r "$sequences" "$sequencing_runs"
CuReSim -f "$data_directory$filename$fastq" -o "$data_directory$prefix$filename$fastq" java -jar tools/CuReSim.jar -m "$read_mean_size" -sd "$read_variance_size" -f "$data_directory$filename$fasta" -o "$data_directory$prefix$filename$fastq"
Rscript src/alignment.r
rm "$data_directory/log.txt" rm "$data_directory/log.txt"

View File

@@ -17,10 +17,10 @@
"homepage": "", "homepage": "",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "a565a2165ab6e195d7c105a8416b8f4b4d0349a4", "rev": "6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6",
"sha256": "1x90qm533lh8xh172rqfcj3pwg8imyx650xgr41rqppmm6fli4w1", "sha256": "16da722vqn96k1scls8mr8l909hl66r7y4ik6sad4ms3vmxbkbb3",
"type": "tarball", "type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a565a2165ab6e195d7c105a8416b8f4b4d0349a4.tar.gz", "url": "https://github.com/NixOS/nixpkgs/archive/6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz" "url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
} }
} }

View File

@@ -2,29 +2,14 @@
with pkgs; with pkgs;
let mkShell {
CuReSim = stdenv.mkDerivation rec { buildInputs = [
name = "CuReSim"; R
version = "1.3"; rPackages.immuneSIM
src = fetchzip { rPackages.Biostrings
url = jdk
"http://www.pegase-biosciences.com/wp-content/uploads/2015/08/${name}${version}.zip"; # Development tools
sha256 = "1hvlpgy4haqgqq52mkxhcl9i1fx67kgwi6f1mijvqzk0xff77hkp"; rPackages.languageserver
stripRoot = true; rPackages.lintr
extraPostFetch = '' ];
chmod go-w $out
'';
};
nativeBuildInputs = [ makeWrapper ];
installPhase = ''
mkdir -pv $out/share/java $out/bin
cp -r ${src} $out/share/java/${name}
makeWrapper ${jre}/bin/java $out/bin/CuReSim --add-flags "-jar $out/share/java/${name}/${name}.jar"
'';
};
in mkShell {
buildInputs =
[ R rPackages.immuneSIM rPackages.Biostrings rPackages.stringr CuReSim ];
} }

View File

@@ -1,153 +0,0 @@
library(Biostrings)
library(parallel)
#' Import and process the TCR and VJ sequences
#'
#' @param file A file path with the sequences after applying a read simulator
#' @return A \code{list} with the TCR sequences and VJ sequences
parse_data <- function(file) {
reversed_sequences <- Biostrings::readQualityScaledDNAStringSet(file)
sequences <- Biostrings::reverseComplement(reversed_sequences)
vj_segments <- union(
readRDS("data/v_segments.rds"),
readRDS("data/j_segments_phe.rds")
)
return(list(sequences, vj_segments))
}
#' Extracts the VJ metadata from the sequences read identifier
#'
#' @param metadata The read identifier of a sequence
#' @return A \code{list} with the V and J gene identifier
parse_metadata <- function(metadata) {
id_elements <- unlist(strsplit(metadata, split = " "))
v_identifier <- id_elements[2]
j_identifier <- id_elements[3]
return(list(v_id = v_identifier, j_id = j_identifier))
}
#' Fetches the sequence that matches the VJ gene identifier
#'
#' @param names The names of the VJ sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @param id The read identifier of a sequence
#' @return A \code{character} containing the gene sequence
match_id_sequence <- function(names, vdj_segments, id) {
matches <- grep(names, pattern = id)
if(id == "TRBJ2-2"){
row <- matches[2]
} else {
row <- matches[1]
}
return(as.character(vdj_segments[row]))
}
#' Gets the V and J sequences for a particular read identifier
#'
#' @param metadata The read identifier of a sequence
#' @param names The names of the VJ sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @return A \code{list} with the V and J sequences
get_vj_sequence <- function(metadata, names, vdj_segments) {
identifiers <- parse_metadata(metadata)
v_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["v_id"])
j_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["j_id"])
return(list(v_seq = v_sequence, j_seq = j_sequence))
}
#' Obtains the VJ sequences for all the TCR sequences
#'
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @return A \code{data.frame} with the V and J sequences
fetch_vj_sequences <- function(sequences, vdj_segments) {
vj_sequences <- sapply(names(sequences),
names(vdj_segments),
vdj_segments,
FUN = get_vj_sequence
)
results <- data.frame(t(vj_sequences))
return(results)
}
#' Perform a pairwise alignment of a sequence with the canonical V or J sequence
#'
#' @param sequence A \code{DNAString} containing the TCR sequences
#' @param vdj_segment A \code{DNAString} containing the V or J sequence
#' @return A \code{PairwiseAlignments}
align_sequence <- function(sequence, vdj_segment) {
return(Biostrings::pairwiseAlignment(
subject = sequence,
pattern = vdj_segment,
type = "global-local",
gapOpening = 1
))
}
#' Computes the coordinate shift of the Cysteine due to indels
#'
#' @param insertion An \code{IRanges} containing the insertions
#' @param deletion An \code{IRanges} containing the deletions
#' @param cys A \code{list} with the Cysteine coordinates
#' @param alignment A \code{PairwiseAlignments}
#' @return A \code{list} with the delta of the Cysteine coordinates
handle_indels <- function(insertion, deletion, cys, alignment) {
ins_start <- sum(Biostrings::width(deletion[start(deletion) <= cys$start]))
ins_end <- sum(Biostrings::width(deletion[end(deletion) <= cys$end]))
shift_num <- c(0, cumsum(Biostrings::width(insertion))[-length(ins_start)])
shifted_ins <- IRanges::shift(insertion, shift_num)
gaps <- sum(width(shifted_ins[end(shifted_ins) < cys$start + ins_start])) +
nchar(stringr::str_extract(alignedSubject(alignment), "^-*"))
return(list("start" = ins_start - gaps, "end" = ins_end - gaps))
}
#' Find the coordinates of the first Cysteine of the HVR
#'
#' @param alignment A \code{PairwiseAlignments}
#' @return A \code{list} with the Cysteine coordinates
get_cys_coordinates <- function(alignment) {
cys <- list("start" = 310, "end" = 312)
insertion <- unlist(Biostrings::insertion(alignment))
deletion <- unlist(Biostrings::deletion(alignment))
delta_coordinates <- handle_indels(insertion, deletion, cys, alignment)
read_start <- unlist(start(Biostrings::Views(alignment)))
cys_start <- cys$start + delta_coordinates$start + read_start - 1
cys_end <- cys$end + delta_coordinates$end + read_start
return(list("start" = cys_start, "end" = cys_end))
}
#' Delimit the hypervariable region (HVR) for each TCR sequence
#'
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
#' @param cores Number of cores to apply multiprocessing
#' @return A \code{QualityScaledDNAStringSet} containing the HVR
get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
df <- fetch_vj_sequences(sequences, vdj_segments)
v_alignment <- parallel::mcmapply(sequences,
df$v_seq,
FUN = align_sequence,
mc.cores = cores
)
cys_coordinates <- parallel::mclapply(v_alignment, FUN = get_cys_coordinates)
cys_df <- as.data.frame(do.call(rbind, cys_coordinates))
remaining <- Biostrings::subseq(sequences, start = unlist(cys_df$end) + 1)
j_alignment <- parallel::mcmapply(remaining,
df$j_seq,
FUN = align_sequence,
mc.cores = cores
)
j_start <- parallel::mclapply(
j_alignment,
function(x) start(Biostrings::Views(x)),
mc.cores = cores
)
hvr_start <- unlist(cys_df$start)
hvr_end <- unlist(cys_df$start) + unlist(j_start) + 2
hvr <- Biostrings::subseq(sequences, start = hvr_start, end = hvr_end)
return(hvr)
}
data <- parse_data(file = "data/curesim_sequence.fastq")
hvr <- get_hvr_sequences(sequences = data[[1]], vdj_segments = data[[2]])
Biostrings::writeXStringSet(hvr, "data/curesim-HVR.fastq", format = "fastq")

View File

@@ -1,10 +1,6 @@
library(immuneSIM) library(immuneSIM)
library(Biostrings) library(Biostrings)
#' Generate the beta chain of a human T-cell receptor (TCR)
#'
#' @param number_of_sequences Number of different sequences to generate
#' @return A \code{data.frame} with the sequences, V and J genes and CDR3
generate_repertoire <- function(number_of_sequences) { generate_repertoire <- function(number_of_sequences) {
return(immuneSIM( return(immuneSIM(
number_of_seqs = number_of_sequences, number_of_seqs = number_of_sequences,
@@ -14,44 +10,44 @@ generate_repertoire <- function(number_of_sequences) {
)) ))
} }
#' Saves the sequences and CDR3 to FASTQ files amplify_rows <- function(data, column, factor) {
#' if (column == "sequence") {
#' @param data A \code{data.frame} with the preprocessed TCR sequences and CDR3 dna_string <- Biostrings::DNAStringSet(data)
reverse_complement <- Biostrings::reverseComplement(dna_string)
return(rep(reverse_complement, factor))
}
return(rep(data, factor))
}
save_data <- function(data) { save_data <- function(data) {
Biostrings::writeXStringSet(data$sequence, Biostrings::writeXStringSet(data$sequence, "data/sequence.fasta")
"data/sequence.fastq", vdj_sequences <- data[-1]
format = "fastq" write.csv(vdj_sequences, "data/vdj_alignment.csv", row.names = FALSE)
}
process_data <- function(repertoire, sequencing_runs) {
columns <- c(
"sequence", "v_sequence_alignment",
"d_sequence_alignment", "j_sequence_alignment"
) )
Biostrings::writeXStringSet(data$junction, "data/HVR.fastq", format = "fastq") data <- repertoire[, columns]
amplified_data <- mapply(data, names(data),
sequencing_runs,
FUN = amplify_rows
)
save_data(amplified_data)
} }
#' Applies the reverse complement and amplifies the number of sequences parse_cli_arguments <- function(args) {
#'
#' @param data A \code{data.frame} containing the TCR sequences and CDR3
#' @param reads Number of times to amplify each sequence
#' @return A \code{data.frame} with reverse complement sequences and VJ metadata
process_data <- function(data, reads) {
dna_sequence <- Biostrings::DNAStringSet(data$sequence)
data$sequence <- Biostrings::reverseComplement(dna_sequence)
names(data$sequence) <- paste(rownames(data), data$v_call, data$j_call, " ")
data$junction <- Biostrings::DNAStringSet(data$junction)
names(data$junction) <- rownames(data)
amplified_data <- data[rep(seq_len(nrow(data)), reads), ]
return(amplified_data)
}
#' Checks the number of command line arguments and captures them
#'
#' @return A \code{vector} containing the command line arguments
parse_cli_arguments <- function() {
args <- commandArgs(trailingOnly = TRUE)
if (length(args) != 2) { if (length(args) != 2) {
stop("usage: repertoire.r <number of sequences> <number of reads>") stop("usage: repertoire.r <number of sequences> <sequencing_runs>")
} }
return(args) return(c(args[1], args[2]))
} }
args <- parse_cli_arguments() args <- commandArgs(trailingOnly = TRUE)
repertoire <- generate_repertoire(number_of_sequences = as.integer(args[1])) arguments <- parse_cli_arguments(args)
data <- process_data(data = repertoire, reads = args[2]) number_of_sequences <- as.integer(arguments[1])
save_data(data) sequencing_runs <- as.integer(arguments[2])
repertoire <- generate_repertoire(number_of_sequences)
process_data(repertoire, sequencing_runs)