|
|
|
|
@@ -22,19 +22,6 @@ def align_sequences(sequence, label) -> Tuple[str, str]:
|
|
|
|
|
return aligned_seq, aligned_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_example(sequence, label) -> bytes:
|
|
|
|
|
"""
|
|
|
|
|
Create a binary-string for each sequence containing the sequence and the bases' counts
|
|
|
|
|
"""
|
|
|
|
|
aligned_seq, aligned_label = align_sequences(sequence, label)
|
|
|
|
|
schema = {
|
|
|
|
|
"sequence": Feature(int64_list=Int64List(value=encode_sequence(aligned_seq))),
|
|
|
|
|
"label": Feature(int64_list=Int64List(value=encode_sequence(aligned_label))),
|
|
|
|
|
}
|
|
|
|
|
example = Example(features=Features(feature=schema))
|
|
|
|
|
return example.SerializeToString()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def encode_sequence(sequence) -> List[int]:
|
|
|
|
|
"""
|
|
|
|
|
Encode the DNA sequence using the indices of the BASES constant
|
|
|
|
|
@@ -43,6 +30,30 @@ def encode_sequence(sequence) -> List[int]:
|
|
|
|
|
return encoded_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_sequences(sequence, label):
|
|
|
|
|
"""
|
|
|
|
|
Align and encode the sequences to obtain a fixed length output in order to perform batching
|
|
|
|
|
"""
|
|
|
|
|
encoded_sequences = []
|
|
|
|
|
aligned_seq, aligned_label = align_sequences(sequence, label)
|
|
|
|
|
for item in [aligned_seq, aligned_label]:
|
|
|
|
|
encoded_sequences.append(encode_sequence(item))
|
|
|
|
|
return encoded_sequences[0], encoded_sequences[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_example(sequence, label) -> bytes:
|
|
|
|
|
"""
|
|
|
|
|
Create a binary-string for each sequence containing the sequence and the bases' counts
|
|
|
|
|
"""
|
|
|
|
|
processed_seq, processed_label = prepare_sequences(sequence, label)
|
|
|
|
|
schema = {
|
|
|
|
|
"sequence": Feature(int64_list=Int64List(value=processed_seq)),
|
|
|
|
|
"label": Feature(int64_list=Int64List(value=processed_label)),
|
|
|
|
|
}
|
|
|
|
|
example = Example(features=Features(feature=schema))
|
|
|
|
|
return example.SerializeToString()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_fastq(hyperparams) -> List[bytes]:
|
|
|
|
|
"""
|
|
|
|
|
Parses a data and a label FASTQ files and generates a List of serialized Examples
|
|
|
|
|
@@ -104,8 +115,13 @@ def read_dataset(filepath, hyperparams) -> TFRecordDataset:
|
|
|
|
|
data_input = TFRecordDataset(filenames=filepath)
|
|
|
|
|
dataset = data_input.map(map_func=process_input, num_parallel_calls=AUTOTUNE)
|
|
|
|
|
shuffled_dataset = dataset.shuffle(buffer_size=10000, seed=42)
|
|
|
|
|
batched_dataset = shuffled_dataset.batch(batch_size=hyperparams.batch_size).repeat(
|
|
|
|
|
count=hyperparams.epochs
|
|
|
|
|
batched_dataset = shuffled_dataset.padded_batch(
|
|
|
|
|
batch_size=hyperparams.batch_size,
|
|
|
|
|
padded_shapes=(
|
|
|
|
|
[hyperparams.max_length, len(BASES)],
|
|
|
|
|
[hyperparams.max_length, len(BASES)],
|
|
|
|
|
),
|
|
|
|
|
padding_values=-1.0,
|
|
|
|
|
)
|
|
|
|
|
return batched_dataset
|
|
|
|
|
|
|
|
|
|
|