Compare commits
15 Commits
b74ceb05c8
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
a53d79fe5f
|
|||
|
b442532768
|
|||
|
f15ff39090
|
|||
|
af079f7907
|
|||
|
57c536e909
|
|||
|
34b9f76cf1
|
|||
|
5c32ad611b
|
|||
|
44785255b0
|
|||
|
bb610f3935
|
|||
|
3af0605449
|
|||
|
8307a54fe0
|
|||
|
da4d9b1dad
|
|||
|
b33c6991e9
|
|||
|
ec1729e92c
|
|||
|
dd7f1bab8d
|
80
README.md
Normal file
80
README.md
Normal file
@@ -0,0 +1,80 @@
|
||||
graphPaname
|
||||
===========
|
||||
|
||||
graphPaname is a system that collects real-time data, relevant to the
|
||||
COVID-19 pandemic de-escalation, from the city of Paris.
|
||||
|
||||
It works with 4 datasets about the de-escalation:
|
||||
|
||||
- Retailers with home delivery
|
||||
- Additional parking places in relay parkings (parkings connected to
|
||||
public transportation)
|
||||
- Temporary cycling paths
|
||||
- Temporary pedestrian streets
|
||||
|
||||
For each dataset, we offer a table with the data, and a map of Paris
|
||||
with markers. Additionally, there\'s a section with photos related to
|
||||
the COVID-19 pandemic.
|
||||
|
||||
Technologies
|
||||
------------
|
||||
|
||||
- Flask
|
||||
- Pandas
|
||||
- Folium
|
||||
|
||||
Data sources
|
||||
------------
|
||||
|
||||
- [Open Data](https://opendata.paris.fr/pages/home/)
|
||||
- [OpenStreetMap](https://www.openstreetmap.org/)
|
||||
- [Flickr](https://flickr.com)
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
- Nix
|
||||
|
||||
Installation
|
||||
------------
|
||||
|
||||
1. Install Nix (compatible with MacOS and Linux):
|
||||
|
||||
``` {.shell}
|
||||
curl -L https://nixos.org/nix/install | sh
|
||||
```
|
||||
|
||||
There are alternative installation methods, if you don\'t want to pipe
|
||||
curl to sh
|
||||
|
||||
2. Clone the repository:
|
||||
|
||||
``` {.shell}
|
||||
git clone https://coolneng.duckdns.org/gitea/coolneng/graphPaname
|
||||
```
|
||||
|
||||
3. Change the working directory to the project:
|
||||
|
||||
``` {.shell}
|
||||
cd graphPaname
|
||||
```
|
||||
|
||||
4. Enter the nix-shell:
|
||||
|
||||
``` {.shell}
|
||||
nix-shell
|
||||
```
|
||||
|
||||
5. Run the tests:
|
||||
|
||||
``` {.shell}
|
||||
pytest
|
||||
```
|
||||
|
||||
6. Execute the Flask application:
|
||||
|
||||
``` {.shell}
|
||||
flask run
|
||||
```
|
||||
|
||||
The website can be accessed via **localhost:5000**
|
||||
@@ -1,4 +0,0 @@
|
||||
* graphPaname
|
||||
|
||||
This project aims to gather information about the smart city of Paris and
|
||||
organize it in different plots and tables.
|
||||
@@ -5,6 +5,7 @@ from flask_bootstrap import Bootstrap
|
||||
|
||||
app = Flask(__name__)
|
||||
app.secret_key = SECRET_KEY
|
||||
app.config['TEMPLATES_AUTO_RELOAD'] = True
|
||||
bootstrap = Bootstrap(app)
|
||||
|
||||
from app import errors, routes
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
from re import findall
|
||||
from typing import List
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
from requests import get
|
||||
|
||||
from constants import URL
|
||||
from constants import FLICKR_URL, DATASET_URL
|
||||
|
||||
|
||||
def format_url(dataset) -> str:
|
||||
"""
|
||||
Constructs the API's URL for the requested dataset
|
||||
"""
|
||||
link = URL.format(dataset)
|
||||
link = DATASET_URL.format(dataset)
|
||||
return link
|
||||
|
||||
|
||||
@@ -21,3 +25,35 @@ def request_dataset(dataset):
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data
|
||||
|
||||
|
||||
def request_flickr(keywords) -> str:
|
||||
"""
|
||||
Returns the HTML of a Flickr search
|
||||
"""
|
||||
search_url = FLICKR_URL.format(keywords)
|
||||
result = get(search_url)
|
||||
html = result.text
|
||||
return html
|
||||
|
||||
|
||||
def extract_urls(images):
|
||||
"""
|
||||
Creates proper URLs from the regex matches
|
||||
"""
|
||||
links = findall("(live.staticflickr.com/\S+.jpg)", str(images))
|
||||
formatted_urls = ["https://" + link for link in links]
|
||||
return formatted_urls
|
||||
|
||||
|
||||
def scrape_flickr(keywords) -> List[str]:
|
||||
"""
|
||||
Creates a list of image links from a Flickr search
|
||||
"""
|
||||
html = request_flickr(keywords)
|
||||
soup = BeautifulSoup(html, features="html.parser")
|
||||
images = soup.find_all(
|
||||
"div", class_="view photo-list-photo-view requiredToShowOnServer awake",
|
||||
)
|
||||
links = extract_urls(images)
|
||||
return links
|
||||
|
||||
@@ -4,5 +4,9 @@ from wtforms import SelectField, SubmitField
|
||||
|
||||
|
||||
class DatasetForm(FlaskForm):
|
||||
"""
|
||||
Web form to select a dataset
|
||||
"""
|
||||
|
||||
dataset = SelectField(choices=CHOICES)
|
||||
submit = SubmitField("Submit")
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from folium import Map, Marker
|
||||
from folium import Map, Marker, PolyLine
|
||||
from pandas import DataFrame, json_normalize
|
||||
|
||||
from app.data_request import request_dataset
|
||||
@@ -15,11 +15,24 @@ def create_dataframe(dataset) -> DataFrame:
|
||||
return filtered_df
|
||||
|
||||
|
||||
def reverse_coordinates(row):
|
||||
"""
|
||||
Reverses each tuples coordinates to ensure folium can parse them correctly
|
||||
"""
|
||||
coord = [tuple(reversed(t)) for t in row]
|
||||
return coord
|
||||
|
||||
|
||||
def create_map(df):
|
||||
"""
|
||||
Creates a Map with markers from the DataFrame
|
||||
Creates a Map with markers or lines from the DataFrame
|
||||
"""
|
||||
m = Map(location=COORDINATES, zoom_start=12)
|
||||
m = Map(location=COORDINATES, zoom_start=12, tiles="Stamen Terrain")
|
||||
for index, row in df.iterrows():
|
||||
Marker(location=row["fields.geo_shape.coordinates"]).add_to(m)
|
||||
if row["fields.geo_shape.type"] == "LineString":
|
||||
coord = reverse_coordinates(row["fields.geo_shape.coordinates"])
|
||||
PolyLine(locations=coord, color="blue", opacity=0.5).add_to(m)
|
||||
else:
|
||||
lng, lat = row["fields.geo_shape.coordinates"]
|
||||
Marker(location=[lat, lng]).add_to(m)
|
||||
m.save("app/templates/map.html")
|
||||
|
||||
@@ -2,12 +2,18 @@ from app.preprocessing import create_dataframe, create_map
|
||||
|
||||
|
||||
def create_table(df) -> str:
|
||||
"""
|
||||
Renders an HTML table from a DataFrame
|
||||
"""
|
||||
df.fillna(value=0, inplace=True)
|
||||
table = df.to_html(classes=["table-striped", "table-hover"])
|
||||
table = df.to_html(classes=["table-striped", "table-sm", "table-responsive"])
|
||||
return table
|
||||
|
||||
|
||||
def process_data(dataset):
|
||||
"""
|
||||
Creates the DataFrame, produces a map and returns a table
|
||||
"""
|
||||
df = create_dataframe(dataset)
|
||||
table = create_table(df)
|
||||
create_map(df)
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
from bs4 import BeautifulSoup
|
||||
from requests import get
|
||||
from constants import FLICKR_URL
|
||||
from re import findall
|
||||
from typing import List
|
||||
|
||||
|
||||
def request_flickr(keywords) -> str:
|
||||
search_url = FLICKR_URL.format(keywords)
|
||||
result = get(search_url)
|
||||
html = result.text
|
||||
return html
|
||||
|
||||
|
||||
def scrap_flickr(keywords) -> List[str]:
|
||||
html = request_flickr(keywords)
|
||||
soup = BeautifulSoup(html, features="html.parser")
|
||||
images = soup.find_all(
|
||||
"div", class_="view photo-list-photo-view requiredToShowOnServer awake",
|
||||
)
|
||||
image_links = findall("(live.staticflickr.com/\S+.jpg)", str(images))
|
||||
return image_links
|
||||
|
||||
|
||||
scrap_flickr("paris")
|
||||
@@ -3,6 +3,7 @@ from flask import render_template
|
||||
from app import app
|
||||
from app.forms import DatasetForm
|
||||
from app.processing import process_data
|
||||
from app.data_request import scrape_flickr
|
||||
|
||||
|
||||
@app.route("/")
|
||||
@@ -27,4 +28,10 @@ def visualization():
|
||||
|
||||
@app.route("/map")
|
||||
def map():
|
||||
return render_template("map.html", title="Map")
|
||||
return render_template("map.html")
|
||||
|
||||
|
||||
@app.route("/photos")
|
||||
def photos():
|
||||
images = scrape_flickr("paris coronavirus")
|
||||
return render_template("photos.html", title="Photos", images=images)
|
||||
|
||||
@@ -22,6 +22,7 @@
|
||||
<a class="nav-link" href="{{ url_for('index') }}">Home <span class="sr-only">(current)</span></a>
|
||||
</li>
|
||||
<li class="nav-link"><a href="{{ url_for('data') }}">Data</a></li>
|
||||
<li class="nav-link"><a href="{{ url_for('photos') }}">Photos</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</nav>
|
||||
|
||||
@@ -3,6 +3,24 @@
|
||||
{% block content %}
|
||||
<div class="jumbotron">
|
||||
<h1 id="graphPaname">graphPaname</h1>
|
||||
<p>graphPaname is an information system that aims to show real-time data, related to the COVID-19 outbreak, in the city of Paris</p>
|
||||
<p>
|
||||
graphPaname is a system that collects real-time data, relevant to the COVID-19 pandemic de-escalation, from the city of Paris.
|
||||
</p>
|
||||
|
||||
|
||||
<p>
|
||||
It works with 4 datasets about the de-escalation:
|
||||
</p>
|
||||
|
||||
<ul class="org-ul">
|
||||
<li>Retailers with home delivery</li>
|
||||
<li>Additional parking places in relay parkings (parkings connected to public transportation)</li>
|
||||
<li>Temporary cycling paths</li>
|
||||
<li>Temporary pedestrian streets</li>
|
||||
</ul>
|
||||
|
||||
<p>
|
||||
For each dataset, we offer a table with the data, and a map of Paris with markers. Additionally, there’s a section with photos related to the COVID-19 pandemic.
|
||||
</p>
|
||||
</div>
|
||||
{% endblock %}
|
||||
|
||||
9
app/templates/photos.html
Normal file
9
app/templates/photos.html
Normal file
@@ -0,0 +1,9 @@
|
||||
{% extends "base.html" %}
|
||||
{% import 'bootstrap/wtf.html' as wtf %}
|
||||
|
||||
{% block app_content %}
|
||||
<h1>Photos</h1>
|
||||
{% for img_path in images %}
|
||||
<img src="{{img_path|safe}}" alt="Image placeholder" id="photo" style="width: 200px"/>
|
||||
{% endfor %}
|
||||
{% endblock %}
|
||||
@@ -3,9 +3,13 @@
|
||||
|
||||
{% block app_content %}
|
||||
<h1>Dataset visualization</h1>
|
||||
<iframe class="map", src="/map" width="400" height="400"></iframe>
|
||||
<table style="margin-left: 350px;">
|
||||
{{ table|safe }}
|
||||
</table>
|
||||
<div class="row">
|
||||
<div class="col-md-9">
|
||||
{{ table|safe }}
|
||||
</div>
|
||||
<div class="col-md-1">
|
||||
<iframe id="map", src="/map" width="350" height="350"></iframe>
|
||||
</div>
|
||||
</div>
|
||||
<p><a href="{{ url_for('data') }}">Back</a></p>
|
||||
{% endblock %}
|
||||
|
||||
@@ -4,10 +4,11 @@ DATASETS = [
|
||||
"deconfinement-parking-relais-doublement-des-places",
|
||||
"deconfinement-rues-amenagees-pour-pietons",
|
||||
]
|
||||
URL = "https://opendata.paris.fr/api/records/1.0/search/?dataset={}&q=&rows=-1"
|
||||
DATASET_URL = "https://opendata.paris.fr/api/records/1.0/search/?dataset={}&q=&rows=-1"
|
||||
FLICKR_URL = "https://www.flickr.com/search/?text={}"
|
||||
COLUMNS = {
|
||||
"deconfinement-pistes-cyclables-temporaires": [
|
||||
"fields.geo_shape.type",
|
||||
"fields.geo_shape.coordinates",
|
||||
"fields.statut",
|
||||
"record_timestamp",
|
||||
@@ -17,12 +18,14 @@ COLUMNS = {
|
||||
"fields.societe",
|
||||
"fields.nb_places_dispositif_environ",
|
||||
"fields.parcs",
|
||||
"fields.geo_shape.type",
|
||||
"fields.geo_shape.coordinates",
|
||||
"fields.cp",
|
||||
"fields.ville",
|
||||
"fields.adresse",
|
||||
],
|
||||
"coronavirus-commercants-parisiens-livraison-a-domicile": [
|
||||
"fields.geo_shape.type",
|
||||
"fields.geo_shape.coordinates",
|
||||
"fields.adresse",
|
||||
"fields.code_postal",
|
||||
@@ -35,6 +38,7 @@ COLUMNS = {
|
||||
"fields.mail",
|
||||
],
|
||||
"deconfinement-rues-amenagees-pour-pietons": [
|
||||
"fields.geo_shape.type",
|
||||
"fields.geo_shape.coordinates",
|
||||
"fields.nom_voie",
|
||||
"fields.categorie",
|
||||
|
||||
@@ -10,17 +10,8 @@ pkgs.mkShell {
|
||||
flask
|
||||
flask-bootstrap
|
||||
flask_wtf
|
||||
matplotlib
|
||||
folium
|
||||
pytest
|
||||
beautifulsoup4
|
||||
# Development tools
|
||||
black
|
||||
isort
|
||||
pyflakes
|
||||
python-language-server
|
||||
pyls-black
|
||||
pyls-isort
|
||||
pyls-mypy
|
||||
];
|
||||
}
|
||||
|
||||
@@ -3,7 +3,7 @@ from requests import get
|
||||
|
||||
from app.preprocessing import create_dataframe
|
||||
from app.data_request import request_dataset
|
||||
from constants import COLUMNS, DATASETS, URL
|
||||
from constants import COLUMNS, DATASETS, DATASET_URL, FLICKR_URL
|
||||
|
||||
|
||||
def test_dataset_request():
|
||||
@@ -11,7 +11,7 @@ def test_dataset_request():
|
||||
Checks that the datasets URLs are reachable
|
||||
"""
|
||||
for dataset in DATASETS:
|
||||
response = get(URL.format(dataset))
|
||||
response = get(DATASET_URL.format(dataset))
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
@@ -23,3 +23,11 @@ def test_dataframe_creation():
|
||||
df = create_dataframe(dataset)
|
||||
assert isinstance(df, DataFrame)
|
||||
assert all(df.columns == COLUMNS[dataset])
|
||||
|
||||
|
||||
def test_flickr_request():
|
||||
"""
|
||||
Checks that Flickr search is avalaible
|
||||
"""
|
||||
response = get(FLICKR_URL.format("paris coronavirus"))
|
||||
assert response.status_code == 200
|
||||
|
||||
Reference in New Issue
Block a user