Compare commits
7 Commits
0.1.0
...
3bdf248a51
| Author | SHA1 | Date | |
|---|---|---|---|
|
3bdf248a51
|
|||
|
e8f03189c2
|
|||
|
f4b7a41599
|
|||
|
9e8beefd38
|
|||
|
40205706e1
|
|||
|
8ffa86a965
|
|||
|
1f7b40d224
|
69
README.md
Normal file
69
README.md
Normal file
@@ -0,0 +1,69 @@
|
||||
# locigenesis
|
||||
|
||||
locigenesis is a tool that generates a human T-cell receptor (TCR), runs
|
||||
it through a sequence reader simulation tool and extracts CDR3.
|
||||
|
||||
The goal of this project is to generate both HVR sequences with and
|
||||
without sequencing errors, in order to create datasets for a Machine
|
||||
Learning algorithm.
|
||||
|
||||
## Technologies
|
||||
|
||||
- [immuneSIM](https://github.com/GreiffLab/immuneSIM/): in silico
|
||||
generation of human and mouse BCR and TCR repertoires
|
||||
- [CuReSim](http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/):
|
||||
read simulator that mimics Ion Torrent sequencing
|
||||
|
||||
## Installation
|
||||
|
||||
This project uses [Nix](https://nixos.org/) to ensure reproducible
|
||||
builds.
|
||||
|
||||
1. Install Nix (compatible with MacOS, Linux and
|
||||
[WSL](https://docs.microsoft.com/en-us/windows/wsl/about)):
|
||||
|
||||
```bash
|
||||
curl -L https://nixos.org/nix/install | sh
|
||||
```
|
||||
|
||||
2. Clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
|
||||
```
|
||||
|
||||
3. Change the working directory to the project:
|
||||
|
||||
```bash
|
||||
cd locigenesis
|
||||
```
|
||||
|
||||
4. Enter the nix-shell:
|
||||
|
||||
```bash
|
||||
nix-shell
|
||||
```
|
||||
|
||||
After running these commands, you will find yourself in a shell that
|
||||
contains all the needed dependencies.
|
||||
|
||||
## Usage
|
||||
|
||||
An execution script that accepts 2 parameters is provided, the following
|
||||
command invokes it:
|
||||
|
||||
```bash
|
||||
./generation.sh <number of sequences> <number of reads>
|
||||
```
|
||||
|
||||
- \<number of sequences\>: an integer that specifies the number of
|
||||
different sequences to generate
|
||||
- \<number of reads\>: an integer that specifies the number of reads
|
||||
to perform on each sequence
|
||||
|
||||
The script will generate 2 files under the data directory:
|
||||
|
||||
------------------- -----------------------------------------------------------------
|
||||
|HVR.fastq |Contains the original CDR3 sequence |
|
||||
|CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |
|
||||
------------------- -----------------------------------------------------------------
|
||||
49
README.org
49
README.org
@@ -1,49 +0,0 @@
|
||||
* locigenesis
|
||||
|
||||
locigenesis is a tool that generates an immune repertoire and runs it through a sequence reader simulation tool, to generate sequencing errors.
|
||||
|
||||
** Installation
|
||||
|
||||
This project uses [[https://nixos.org/][Nix]] to ensure reproducible builds.
|
||||
|
||||
1. Install Nix (compatible with MacOS, Linux and [[https://docs.microsoft.com/en-us/windows/wsl/about][WSL]]):
|
||||
|
||||
#+begin_src shell
|
||||
curl -L https://nixos.org/nix/install | sh
|
||||
#+end_src
|
||||
|
||||
1. Clone the repository:
|
||||
|
||||
#+begin_src shell
|
||||
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
|
||||
#+end_src
|
||||
|
||||
3. Change the working directory to the project:
|
||||
|
||||
#+begin_src shell
|
||||
cd locigenesis
|
||||
#+end_src
|
||||
|
||||
4. Enter the nix-shell:
|
||||
|
||||
#+begin_src shell
|
||||
nix-shell
|
||||
#+end_src
|
||||
|
||||
After running these commands, you will find yourself in a shell that contains all the needed dependencies.
|
||||
|
||||
** Usage
|
||||
|
||||
An execution script that accepts 2 parameters is provided, the following command invokes it:
|
||||
|
||||
#+begin_src shell
|
||||
./generation.sh <number of sequences> <number of reads>
|
||||
#+end_src
|
||||
|
||||
- <number of sequences>: an integer that specifies the number of different sequences to generate
|
||||
- <number of reads>: an integer that specifies the number of reads to perform on each sequence
|
||||
|
||||
The script will generate 2 files under the data directory:
|
||||
|
||||
| HVR.fastq | Contains the original CDR3 sequence |
|
||||
| CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |
|
||||
@@ -1,46 +0,0 @@
|
||||
#+TITLE: locigenesis
|
||||
#+AUTHOR: Amin Kasrou Aouam
|
||||
#+DATE: 2021-03-10
|
||||
* Sequence alignment
|
||||
|
||||
Our generated sequences contain the full VJ region, but we are only interested in the CDR3 (Complementarity-determining region). We will proceed by delimiting CDR3, using the known sequences of V and J.
|
||||
|
||||
#+begin_src R :results value silent
|
||||
v_segments <- readRDS("data/v_segments.rds")
|
||||
j_segments <- readRDS("data/j_segments_phe.rds")
|
||||
#+end_src
|
||||
|
||||
#+begin_src R
|
||||
print(v_segments)
|
||||
print(j_segments)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
A DNAStringSet instance of length 147
|
||||
width seq names
|
||||
[1] 326 GATACTGGAATTACCCAGACAC...ATCTCTGCACCAGCAGCCAAGA TRBV1*01_P
|
||||
[2] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*01_F
|
||||
[3] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*02_F
|
||||
[4] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*01_F
|
||||
[5] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*02_F
|
||||
... ... ...
|
||||
[143] 324 GATACTGGAGTCTCCCAGAACC...GTATCTCTGTGCCAGCACGTTG TRBV7-9*06_(F)
|
||||
[144] 323 .........................TGTATCTCTGTGCCAGCAGCAG TRBV7-9*07_(F)
|
||||
[145] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*01_F
|
||||
[146] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*02_F
|
||||
[147] 321 GATTCTGGAGTCACACAAACCC...TTTGTATTTCTGTGCCAGCAGC TRBV9*03_(F)
|
||||
A DNAStringSet instance of length 16
|
||||
width seq names
|
||||
[1] 32 TGGGCGTCTGGGCGGAGGACTCCTGGTTCTGG TRBJ2-2P*01_ORF
|
||||
[2] 31 TTTGGAGAGGGAAGTTGGCTCACTGTTGTAG TRBJ1-3*01_F
|
||||
[3] 31 TTTGGTGATGGGACTCGACTCTCCATCCTAG TRBJ1-5*01_F
|
||||
[4] 31 TTTGGCAGTGGAACCCAGCTCTCTGTCTTGG TRBJ1-4*01_F
|
||||
[5] 31 TTCGGTTCGGGGACCAGGTTAACCGTTGTAG TRBJ1-2*01_F
|
||||
... ... ...
|
||||
[12] 31 TTTGGCCCAGGCACCCGGCTGACAGTGCTCG TRBJ2-3*01_F
|
||||
[13] 31 TTCGGGCCAGGCACGCGGCTCCTGGTGCTCG TRBJ2-5*01_F
|
||||
[14] 31 TTCGGGCCAGGGACACGGCTCACCGTGCTAG TRBJ2-1*01_F
|
||||
[15] 31 TTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*01_F
|
||||
[16] 31 GTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*02_ORF
|
||||
#+end_example
|
||||
@@ -17,10 +17,10 @@
|
||||
"homepage": "",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6",
|
||||
"sha256": "16da722vqn96k1scls8mr8l909hl66r7y4ik6sad4ms3vmxbkbb3",
|
||||
"rev": "a565a2165ab6e195d7c105a8416b8f4b4d0349a4",
|
||||
"sha256": "1x90qm533lh8xh172rqfcj3pwg8imyx650xgr41rqppmm6fli4w1",
|
||||
"type": "tarball",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6.tar.gz",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/a565a2165ab6e195d7c105a8416b8f4b4d0349a4.tar.gz",
|
||||
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
|
||||
}
|
||||
}
|
||||
|
||||
12
shell.nix
12
shell.nix
@@ -21,16 +21,10 @@ let
|
||||
installPhase = ''
|
||||
mkdir -pv $out/share/java $out/bin
|
||||
cp -r ${src} $out/share/java/${name}
|
||||
makeWrapper ${pkgs.jdk}/bin/java $out/bin/CuReSim --add-flags "-jar $out/share/java/${name}/${name}.jar"
|
||||
makeWrapper ${jre}/bin/java $out/bin/CuReSim --add-flags "-jar $out/share/java/${name}/${name}.jar"
|
||||
'';
|
||||
};
|
||||
in mkShell {
|
||||
buildInputs = [
|
||||
R
|
||||
rPackages.immuneSIM
|
||||
rPackages.Biostrings
|
||||
rPackages.stringr
|
||||
jdk
|
||||
CuReSim
|
||||
];
|
||||
buildInputs =
|
||||
[ R rPackages.immuneSIM rPackages.Biostrings rPackages.stringr CuReSim ];
|
||||
}
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
library(Biostrings)
|
||||
library(parallel)
|
||||
|
||||
#' Import and process the TCR and VJ sequences
|
||||
#'
|
||||
#' @param file A file path with the sequences after applying a read simulator
|
||||
#' @return A \code{list} with the TCR sequences and VJ sequences
|
||||
parse_data <- function(file) {
|
||||
reversed_sequences <- Biostrings::readQualityScaledDNAStringSet(file)
|
||||
sequences <- Biostrings::reverseComplement(reversed_sequences)
|
||||
@@ -11,6 +15,10 @@ parse_data <- function(file) {
|
||||
return(list(sequences, vj_segments))
|
||||
}
|
||||
|
||||
#' Extracts the VJ metadata from the sequences read identifier
|
||||
#'
|
||||
#' @param metadata The read identifier of a sequence
|
||||
#' @return A \code{list} with the V and J gene identifier
|
||||
parse_metadata <- function(metadata) {
|
||||
id_elements <- unlist(strsplit(metadata, split = " "))
|
||||
v_identifier <- id_elements[2]
|
||||
@@ -18,12 +26,24 @@ parse_metadata <- function(metadata) {
|
||||
return(list(v_id = v_identifier, j_id = j_identifier))
|
||||
}
|
||||
|
||||
#' Fetches the sequence that matches the VJ gene identifier
|
||||
#'
|
||||
#' @param names The names of the VJ sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @param id The read identifier of a sequence
|
||||
#' @return A \code{character} containing the gene sequence
|
||||
match_id_sequence <- function(names, vdj_segments, id) {
|
||||
matches <- grep(names, pattern = id)
|
||||
row <- matches[1]
|
||||
return(as.character(vdj_segments[row]))
|
||||
}
|
||||
|
||||
#' Gets the V and J sequences for a particular read identifier
|
||||
#'
|
||||
#' @param metadata The read identifier of a sequence
|
||||
#' @param names The names of the VJ sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @return A \code{list} with the V and J sequences
|
||||
get_vj_sequence <- function(metadata, names, vdj_segments) {
|
||||
identifiers <- parse_metadata(metadata)
|
||||
v_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["v_id"])
|
||||
@@ -31,6 +51,11 @@ get_vj_sequence <- function(metadata, names, vdj_segments) {
|
||||
return(list(v_seq = v_sequence, j_seq = j_sequence))
|
||||
}
|
||||
|
||||
#' Obtains the VJ sequences for all the TCR sequences
|
||||
#'
|
||||
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @return A \code{data.frame} with the V and J sequences
|
||||
fetch_vj_sequences <- function(sequences, vdj_segments) {
|
||||
vj_sequences <- sapply(names(sequences),
|
||||
names(vdj_segments),
|
||||
@@ -41,6 +66,11 @@ fetch_vj_sequences <- function(sequences, vdj_segments) {
|
||||
return(results)
|
||||
}
|
||||
|
||||
#' Perform a pairwise alignment of a sequence with the canonical V or J sequence
|
||||
#'
|
||||
#' @param sequence A \code{DNAString} containing the TCR sequences
|
||||
#' @param vdj_segment A \code{DNAString} containing the V or J sequence
|
||||
#' @return A \code{PairwiseAlignments}
|
||||
align_sequence <- function(sequence, vdj_segment) {
|
||||
return(Biostrings::pairwiseAlignment(
|
||||
subject = sequence,
|
||||
@@ -50,6 +80,13 @@ align_sequence <- function(sequence, vdj_segment) {
|
||||
))
|
||||
}
|
||||
|
||||
#' Computes the coordinate shift of the Cysteine due to indels
|
||||
#'
|
||||
#' @param insertion An \code{IRanges} containing the insertions
|
||||
#' @param deletion An \code{IRanges} containing the deletions
|
||||
#' @param cys A \code{list} with the Cysteine coordinates
|
||||
#' @param alignment A \code{PairwiseAlignments}
|
||||
#' @return A \code{list} with the delta of the Cysteine coordinates
|
||||
handle_indels <- function(insertion, deletion, cys, alignment) {
|
||||
ins_start <- sum(Biostrings::width(deletion[start(deletion) <= cys$start]))
|
||||
ins_end <- sum(Biostrings::width(deletion[end(deletion) <= cys$end]))
|
||||
@@ -60,6 +97,10 @@ handle_indels <- function(insertion, deletion, cys, alignment) {
|
||||
return(list("start" = ins_start - gaps, "end" = ins_end - gaps))
|
||||
}
|
||||
|
||||
#' Find the coordinates of the first Cysteine of the HVR
|
||||
#'
|
||||
#' @param alignment A \code{PairwiseAlignments}
|
||||
#' @return A \code{list} with the Cysteine coordinates
|
||||
get_cys_coordinates <- function(alignment) {
|
||||
cys <- list("start" = 310, "end" = 312)
|
||||
insertion <- unlist(Biostrings::insertion(alignment))
|
||||
@@ -70,6 +111,12 @@ get_cys_coordinates <- function(alignment) {
|
||||
return(list("start" = cys_start, "end" = cys_end))
|
||||
}
|
||||
|
||||
#' Delimit the hypervariable region (HVR) for each TCR sequence
|
||||
#'
|
||||
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @param cores Number of cores to apply multiprocessing
|
||||
#' @return A \code{QualityScaledDNAStringSet} containing the HVR
|
||||
get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
|
||||
df <- fetch_vj_sequences(sequences, vdj_segments)
|
||||
v_alignment <- parallel::mcmapply(sequences,
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
library(immuneSIM)
|
||||
library(Biostrings)
|
||||
|
||||
#' Generate the beta chain of a human T-cell receptor (TCR)
|
||||
#'
|
||||
#' @param number_of_sequences Number of different sequences to generate
|
||||
#' @return A \code{data.frame} with the sequences, V and J genes and CDR3
|
||||
generate_repertoire <- function(number_of_sequences) {
|
||||
return(immuneSIM(
|
||||
number_of_seqs = number_of_sequences,
|
||||
@@ -10,6 +14,9 @@ generate_repertoire <- function(number_of_sequences) {
|
||||
))
|
||||
}
|
||||
|
||||
#' Saves the sequences and CDR3 to FASTQ files
|
||||
#'
|
||||
#' @param data A \code{data.frame} with the preprocessed TCR sequences and CDR3
|
||||
save_data <- function(data) {
|
||||
Biostrings::writeXStringSet(data$sequence,
|
||||
"data/sequence.fastq",
|
||||
@@ -18,6 +25,11 @@ save_data <- function(data) {
|
||||
Biostrings::writeXStringSet(data$junction, "data/HVR.fastq", format = "fastq")
|
||||
}
|
||||
|
||||
#' Applies the reverse complement and amplifies the number of sequences
|
||||
#'
|
||||
#' @param data A \code{data.frame} containing the TCR sequences and CDR3
|
||||
#' @param reads Number of times to amplify each sequence
|
||||
#' @return A \code{data.frame} with reverse complement sequences and VJ metadata
|
||||
process_data <- function(data, reads) {
|
||||
dna_sequence <- Biostrings::DNAStringSet(data$sequence)
|
||||
data$sequence <- Biostrings::reverseComplement(dna_sequence)
|
||||
@@ -28,6 +40,9 @@ process_data <- function(data, reads) {
|
||||
return(amplified_data)
|
||||
}
|
||||
|
||||
#' Checks the number of command line arguments and captures them
|
||||
#'
|
||||
#' @return A \code{vector} containing the command line arguments
|
||||
parse_cli_arguments <- function() {
|
||||
args <- commandArgs(trailingOnly = TRUE)
|
||||
if (length(args) != 2) {
|
||||
|
||||
Reference in New Issue
Block a user