Compare commits
38 Commits
66b39485a9
...
0.1.1
| Author | SHA1 | Date | |
|---|---|---|---|
|
e8f03189c2
|
|||
|
f4b7a41599
|
|||
|
9e8beefd38
|
|||
|
40205706e1
|
|||
|
8ffa86a965
|
|||
|
1f7b40d224
|
|||
|
ad8abcc4fc
|
|||
|
6440816a87
|
|||
|
0e005735bc
|
|||
|
4f0936718b
|
|||
|
1b6e2d13ea
|
|||
|
36eb73b458
|
|||
|
81a57657fe
|
|||
|
5afe040592
|
|||
|
c250c139dd
|
|||
|
4dec2061fc
|
|||
|
4adb92e901
|
|||
|
83819b296b
|
|||
|
a7c1df5ce2
|
|||
|
81ebd4fbbe
|
|||
|
659f0097d8
|
|||
|
fb5d781c66
|
|||
|
35406497a3
|
|||
|
b771071974
|
|||
|
2a997a3e5c
|
|||
|
1020d610d3
|
|||
|
5154a35fca
|
|||
|
18ffbf9a75
|
|||
|
82fdfdc6b9
|
|||
|
dd9f7ffde4
|
|||
|
e694ee3292
|
|||
|
e5a7b726a9
|
|||
|
38b35f7d12
|
|||
|
f81e4af94e
|
|||
|
576597cb04
|
|||
|
13f453718d
|
|||
|
3a10380d8c
|
|||
|
8f5b9ee698
|
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,3 +1 @@
|
|||||||
*.csv
|
|
||||||
*.fasta
|
|
||||||
*.fastq
|
*.fastq
|
||||||
|
|||||||
55
README.org
55
README.org
@@ -1,3 +1,56 @@
|
|||||||
* locigenesis
|
* locigenesis
|
||||||
|
|
||||||
locigenesis is a tool that generates an immune repertoire and runs it through a sequence reader simulation tool, to generate sequencing errors.
|
locigenesis is a tool that generates a human T-cell receptor (TCR), runs it through a sequence reader simulation tool and extracts CDR3.
|
||||||
|
|
||||||
|
The goal of this project is to generate both HVR sequences with and without sequencing errors, in order to create datasets for a Machine Learning algorithm.
|
||||||
|
|
||||||
|
** Technologies
|
||||||
|
|
||||||
|
- [[https://github.com/GreiffLab/immuneSIM/][immuneSIM]]: in silico generation of human and mouse BCR and TCR repertoires
|
||||||
|
- [[http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/][CuReSim]]: read simulator that mimics Ion Torrent sequencing
|
||||||
|
|
||||||
|
** Installation
|
||||||
|
|
||||||
|
This project uses [[https://nixos.org/][Nix]] to ensure reproducible builds.
|
||||||
|
|
||||||
|
1. Install Nix (compatible with MacOS, Linux and [[https://docs.microsoft.com/en-us/windows/wsl/about][WSL]]):
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
curl -L https://nixos.org/nix/install | sh
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
1. Clone the repository:
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
3. Change the working directory to the project:
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
cd locigenesis
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
4. Enter the nix-shell:
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
nix-shell
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
After running these commands, you will find yourself in a shell that contains all the needed dependencies.
|
||||||
|
|
||||||
|
** Usage
|
||||||
|
|
||||||
|
An execution script that accepts 2 parameters is provided, the following command invokes it:
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
./generation.sh <number of sequences> <number of reads>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
- <number of sequences>: an integer that specifies the number of different sequences to generate
|
||||||
|
- <number of reads>: an integer that specifies the number of reads to perform on each sequence
|
||||||
|
|
||||||
|
The script will generate 2 files under the data directory:
|
||||||
|
|
||||||
|
| HVR.fastq | Contains the original CDR3 sequence |
|
||||||
|
| CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |
|
||||||
|
|||||||
BIN
data/j_segments_phe.rds
Normal file
BIN
data/j_segments_phe.rds
Normal file
Binary file not shown.
BIN
data/v_segments.rds
Normal file
BIN
data/v_segments.rds
Normal file
Binary file not shown.
@@ -1,46 +0,0 @@
|
|||||||
#+TITLE: locigenesis
|
|
||||||
#+AUTHOR: Amin Kasrou Aouam
|
|
||||||
#+DATE: 2021-03-10
|
|
||||||
* Sequence alignment
|
|
||||||
|
|
||||||
Our generated sequences contain the full VJ region, but we are only interested in the CDR3 (Complementarity-determining region). We will proceed by delimiting CDR3, using the known sequences of V and J.
|
|
||||||
|
|
||||||
#+begin_src R :results value silent
|
|
||||||
v_segments <- readRDS("data/v_segments.rds")
|
|
||||||
j_segments <- readRDS("data/j_segments_phe.rds")
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+begin_src R
|
|
||||||
print(v_segments)
|
|
||||||
print(j_segments)
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+RESULTS:
|
|
||||||
#+begin_example
|
|
||||||
A DNAStringSet instance of length 147
|
|
||||||
width seq names
|
|
||||||
[1] 326 GATACTGGAATTACCCAGACAC...ATCTCTGCACCAGCAGCCAAGA TRBV1*01_P
|
|
||||||
[2] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*01_F
|
|
||||||
[3] 326 GATGCTGAAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-1*02_F
|
|
||||||
[4] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*01_F
|
|
||||||
[5] 326 GATGCTGGAATCACCCAGAGCC...ATTTCTGCGCCAGCAGTGAGTC TRBV10-2*02_F
|
|
||||||
... ... ...
|
|
||||||
[143] 324 GATACTGGAGTCTCCCAGAACC...GTATCTCTGTGCCAGCACGTTG TRBV7-9*06_(F)
|
|
||||||
[144] 323 .........................TGTATCTCTGTGCCAGCAGCAG TRBV7-9*07_(F)
|
|
||||||
[145] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*01_F
|
|
||||||
[146] 325 GATTCTGGAGTCACACAAACCC...TATTTCTGTGCCAGCAGCGTAG TRBV9*02_F
|
|
||||||
[147] 321 GATTCTGGAGTCACACAAACCC...TTTGTATTTCTGTGCCAGCAGC TRBV9*03_(F)
|
|
||||||
A DNAStringSet instance of length 16
|
|
||||||
width seq names
|
|
||||||
[1] 32 TGGGCGTCTGGGCGGAGGACTCCTGGTTCTGG TRBJ2-2P*01_ORF
|
|
||||||
[2] 31 TTTGGAGAGGGAAGTTGGCTCACTGTTGTAG TRBJ1-3*01_F
|
|
||||||
[3] 31 TTTGGTGATGGGACTCGACTCTCCATCCTAG TRBJ1-5*01_F
|
|
||||||
[4] 31 TTTGGCAGTGGAACCCAGCTCTCTGTCTTGG TRBJ1-4*01_F
|
|
||||||
[5] 31 TTCGGTTCGGGGACCAGGTTAACCGTTGTAG TRBJ1-2*01_F
|
|
||||||
... ... ...
|
|
||||||
[12] 31 TTTGGCCCAGGCACCCGGCTGACAGTGCTCG TRBJ2-3*01_F
|
|
||||||
[13] 31 TTCGGGCCAGGCACGCGGCTCCTGGTGCTCG TRBJ2-5*01_F
|
|
||||||
[14] 31 TTCGGGCCAGGGACACGGCTCACCGTGCTAG TRBJ2-1*01_F
|
|
||||||
[15] 31 TTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*01_F
|
|
||||||
[16] 31 GTCGGGCCGGGCACCAGGCTCACGGTCACAG TRBJ2-7*02_ORF
|
|
||||||
#+end_example
|
|
||||||
@@ -1,7 +1,7 @@
|
|||||||
#!/bin/sh
|
#!/bin/sh
|
||||||
|
|
||||||
usage() {
|
usage() {
|
||||||
echo "usage: generation.sh <number of sequences> <sequencing runs>"
|
echo "usage: generation.sh <number of sequences> <number of reads>"
|
||||||
exit 1
|
exit 1
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -10,15 +10,13 @@ if [ $# != 2 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
sequences=$1
|
sequences=$1
|
||||||
sequencing_runs=$2
|
number_of_reads=$2
|
||||||
read_mean_size=350
|
|
||||||
read_variance_size=0.0
|
|
||||||
data_directory="data/"
|
data_directory="data/"
|
||||||
fasta=".fasta"
|
|
||||||
fastq=".fastq"
|
fastq=".fastq"
|
||||||
filename="sequence"
|
filename="sequence"
|
||||||
prefix="curesim_"
|
prefix="curesim_"
|
||||||
|
|
||||||
Rscript src/repertoire.r "$sequences" "$sequencing_runs"
|
Rscript src/repertoire.r "$sequences" "$number_of_reads" &&
|
||||||
java -jar tools/CuReSim.jar -m "$read_mean_size" -sd "$read_variance_size" -f "$data_directory$filename$fasta" -o "$data_directory$prefix$filename$fastq"
|
CuReSim -f "$data_directory$filename$fastq" -o "$data_directory$prefix$filename$fastq"
|
||||||
|
Rscript src/alignment.r
|
||||||
rm "$data_directory/log.txt"
|
rm "$data_directory/log.txt"
|
||||||
|
|||||||
@@ -17,10 +17,10 @@
|
|||||||
"homepage": "",
|
"homepage": "",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6",
|
"rev": "a565a2165ab6e195d7c105a8416b8f4b4d0349a4",
|
||||||
"sha256": "16da722vqn96k1scls8mr8l909hl66r7y4ik6sad4ms3vmxbkbb3",
|
"sha256": "1x90qm533lh8xh172rqfcj3pwg8imyx650xgr41rqppmm6fli4w1",
|
||||||
"type": "tarball",
|
"type": "tarball",
|
||||||
"url": "https://github.com/NixOS/nixpkgs/archive/6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6.tar.gz",
|
"url": "https://github.com/NixOS/nixpkgs/archive/a565a2165ab6e195d7c105a8416b8f4b4d0349a4.tar.gz",
|
||||||
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
|
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
35
shell.nix
35
shell.nix
@@ -2,14 +2,29 @@
|
|||||||
|
|
||||||
with pkgs;
|
with pkgs;
|
||||||
|
|
||||||
mkShell {
|
let
|
||||||
buildInputs = [
|
CuReSim = stdenv.mkDerivation rec {
|
||||||
R
|
name = "CuReSim";
|
||||||
rPackages.immuneSIM
|
version = "1.3";
|
||||||
rPackages.Biostrings
|
src = fetchzip {
|
||||||
jdk
|
url =
|
||||||
# Development tools
|
"http://www.pegase-biosciences.com/wp-content/uploads/2015/08/${name}${version}.zip";
|
||||||
rPackages.languageserver
|
sha256 = "1hvlpgy4haqgqq52mkxhcl9i1fx67kgwi6f1mijvqzk0xff77hkp";
|
||||||
rPackages.lintr
|
stripRoot = true;
|
||||||
];
|
extraPostFetch = ''
|
||||||
|
chmod go-w $out
|
||||||
|
'';
|
||||||
|
};
|
||||||
|
|
||||||
|
nativeBuildInputs = [ makeWrapper ];
|
||||||
|
|
||||||
|
installPhase = ''
|
||||||
|
mkdir -pv $out/share/java $out/bin
|
||||||
|
cp -r ${src} $out/share/java/${name}
|
||||||
|
makeWrapper ${jre}/bin/java $out/bin/CuReSim --add-flags "-jar $out/share/java/${name}/${name}.jar"
|
||||||
|
'';
|
||||||
|
};
|
||||||
|
in mkShell {
|
||||||
|
buildInputs =
|
||||||
|
[ R rPackages.immuneSIM rPackages.Biostrings rPackages.stringr CuReSim ];
|
||||||
}
|
}
|
||||||
|
|||||||
148
src/alignment.r
Normal file
148
src/alignment.r
Normal file
@@ -0,0 +1,148 @@
|
|||||||
|
library(Biostrings)
|
||||||
|
library(parallel)
|
||||||
|
|
||||||
|
#' Import and process the TCR and VJ sequences
|
||||||
|
#'
|
||||||
|
#' @param file A file path with the sequences after applying a read simulator
|
||||||
|
#' @return A \code{list} with the TCR sequences and VJ sequences
|
||||||
|
parse_data <- function(file) {
|
||||||
|
reversed_sequences <- Biostrings::readQualityScaledDNAStringSet(file)
|
||||||
|
sequences <- Biostrings::reverseComplement(reversed_sequences)
|
||||||
|
vj_segments <- union(
|
||||||
|
readRDS("data/v_segments.rds"),
|
||||||
|
readRDS("data/j_segments_phe.rds")
|
||||||
|
)
|
||||||
|
return(list(sequences, vj_segments))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Extracts the VJ metadata from the sequences read identifier
|
||||||
|
#'
|
||||||
|
#' @param metadata The read identifier of a sequence
|
||||||
|
#' @return A \code{list} with the V and J gene identifier
|
||||||
|
parse_metadata <- function(metadata) {
|
||||||
|
id_elements <- unlist(strsplit(metadata, split = " "))
|
||||||
|
v_identifier <- id_elements[2]
|
||||||
|
j_identifier <- id_elements[3]
|
||||||
|
return(list(v_id = v_identifier, j_id = j_identifier))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Fetches the sequence that matches the VJ gene identifier
|
||||||
|
#'
|
||||||
|
#' @param names The names of the VJ sequences
|
||||||
|
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||||
|
#' @param id The read identifier of a sequence
|
||||||
|
#' @return A \code{character} containing the gene sequence
|
||||||
|
match_id_sequence <- function(names, vdj_segments, id) {
|
||||||
|
matches <- grep(names, pattern = id)
|
||||||
|
row <- matches[1]
|
||||||
|
return(as.character(vdj_segments[row]))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Gets the V and J sequences for a particular read identifier
|
||||||
|
#'
|
||||||
|
#' @param metadata The read identifier of a sequence
|
||||||
|
#' @param names The names of the VJ sequences
|
||||||
|
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||||
|
#' @return A \code{list} with the V and J sequences
|
||||||
|
get_vj_sequence <- function(metadata, names, vdj_segments) {
|
||||||
|
identifiers <- parse_metadata(metadata)
|
||||||
|
v_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["v_id"])
|
||||||
|
j_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["j_id"])
|
||||||
|
return(list(v_seq = v_sequence, j_seq = j_sequence))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Obtains the VJ sequences for all the TCR sequences
|
||||||
|
#'
|
||||||
|
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||||
|
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||||
|
#' @return A \code{data.frame} with the V and J sequences
|
||||||
|
fetch_vj_sequences <- function(sequences, vdj_segments) {
|
||||||
|
vj_sequences <- sapply(names(sequences),
|
||||||
|
names(vdj_segments),
|
||||||
|
vdj_segments,
|
||||||
|
FUN = get_vj_sequence
|
||||||
|
)
|
||||||
|
results <- data.frame(t(vj_sequences))
|
||||||
|
return(results)
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Perform a pairwise alignment of a sequence with the canonical V or J sequence
|
||||||
|
#'
|
||||||
|
#' @param sequence A \code{DNAString} containing the TCR sequences
|
||||||
|
#' @param vdj_segment A \code{DNAString} containing the V or J sequence
|
||||||
|
#' @return A \code{PairwiseAlignments}
|
||||||
|
align_sequence <- function(sequence, vdj_segment) {
|
||||||
|
return(Biostrings::pairwiseAlignment(
|
||||||
|
subject = sequence,
|
||||||
|
pattern = vdj_segment,
|
||||||
|
type = "global-local",
|
||||||
|
gapOpening = 1
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Computes the coordinate shift of the Cysteine due to indels
|
||||||
|
#'
|
||||||
|
#' @param insertion An \code{IRanges} containing the insertions
|
||||||
|
#' @param deletion An \code{IRanges} containing the deletions
|
||||||
|
#' @param cys A \code{list} with the Cysteine coordinates
|
||||||
|
#' @param alignment A \code{PairwiseAlignments}
|
||||||
|
#' @return A \code{list} with the delta of the Cysteine coordinates
|
||||||
|
handle_indels <- function(insertion, deletion, cys, alignment) {
|
||||||
|
ins_start <- sum(Biostrings::width(deletion[start(deletion) <= cys$start]))
|
||||||
|
ins_end <- sum(Biostrings::width(deletion[end(deletion) <= cys$end]))
|
||||||
|
shift_num <- c(0, cumsum(Biostrings::width(insertion))[-length(ins_start)])
|
||||||
|
shifted_ins <- IRanges::shift(insertion, shift_num)
|
||||||
|
gaps <- sum(width(shifted_ins[end(shifted_ins) < cys$start + ins_start])) +
|
||||||
|
nchar(stringr::str_extract(alignedSubject(alignment), "^-*"))
|
||||||
|
return(list("start" = ins_start - gaps, "end" = ins_end - gaps))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Find the coordinates of the first Cysteine of the HVR
|
||||||
|
#'
|
||||||
|
#' @param alignment A \code{PairwiseAlignments}
|
||||||
|
#' @return A \code{list} with the Cysteine coordinates
|
||||||
|
get_cys_coordinates <- function(alignment) {
|
||||||
|
cys <- list("start" = 310, "end" = 312)
|
||||||
|
insertion <- unlist(Biostrings::insertion(alignment))
|
||||||
|
deletion <- unlist(Biostrings::deletion(alignment))
|
||||||
|
delta_coordinates <- handle_indels(insertion, deletion, cys, alignment)
|
||||||
|
cys_start <- cys$start + delta_coordinates$start
|
||||||
|
cys_end <- cys$end + delta_coordinates$end
|
||||||
|
return(list("start" = cys_start, "end" = cys_end))
|
||||||
|
}
|
||||||
|
|
||||||
|
#' Delimit the hypervariable region (HVR) for each TCR sequence
|
||||||
|
#'
|
||||||
|
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||||
|
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||||
|
#' @param cores Number of cores to apply multiprocessing
|
||||||
|
#' @return A \code{QualityScaledDNAStringSet} containing the HVR
|
||||||
|
get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
|
||||||
|
df <- fetch_vj_sequences(sequences, vdj_segments)
|
||||||
|
v_alignment <- parallel::mcmapply(sequences,
|
||||||
|
df$v_seq,
|
||||||
|
FUN = align_sequence,
|
||||||
|
mc.cores = cores
|
||||||
|
)
|
||||||
|
cys_coordinates <- parallel::mclapply(v_alignment, FUN = get_cys_coordinates)
|
||||||
|
cys_df <- as.data.frame(do.call(rbind, cys_coordinates))
|
||||||
|
remaining <- Biostrings::subseq(sequences, start = unlist(cys_df$end))
|
||||||
|
j_alignment <- parallel::mcmapply(remaining,
|
||||||
|
df$j_seq,
|
||||||
|
FUN = align_sequence,
|
||||||
|
mc.cores = cores
|
||||||
|
)
|
||||||
|
j_start <- parallel::mclapply(
|
||||||
|
j_alignment,
|
||||||
|
function(x) start(Biostrings::Views(x)),
|
||||||
|
mc.cores = cores
|
||||||
|
)
|
||||||
|
hvr_start <- unlist(cys_df$start)
|
||||||
|
hvr_end <- unlist(cys_df$start) + unlist(j_start) + 2
|
||||||
|
hvr <- Biostrings::subseq(sequences, start = hvr_start, end = hvr_end)
|
||||||
|
return(hvr)
|
||||||
|
}
|
||||||
|
|
||||||
|
data <- parse_data(file = "data/curesim_sequence.fastq")
|
||||||
|
hvr <- get_hvr_sequences(sequences = data[[1]], vdj_segments = data[[2]])
|
||||||
|
Biostrings::writeXStringSet(hvr, "data/CuReSim-HVR.fastq", format = "fastq")
|
||||||
@@ -1,6 +1,10 @@
|
|||||||
library(immuneSIM)
|
library(immuneSIM)
|
||||||
library(Biostrings)
|
library(Biostrings)
|
||||||
|
|
||||||
|
#' Generate the beta chain of a human T-cell receptor (TCR)
|
||||||
|
#'
|
||||||
|
#' @param number_of_sequences Number of different sequences to generate
|
||||||
|
#' @return A \code{data.frame} with the sequences, V and J genes and CDR3
|
||||||
generate_repertoire <- function(number_of_sequences) {
|
generate_repertoire <- function(number_of_sequences) {
|
||||||
return(immuneSIM(
|
return(immuneSIM(
|
||||||
number_of_seqs = number_of_sequences,
|
number_of_seqs = number_of_sequences,
|
||||||
@@ -10,44 +14,44 @@ generate_repertoire <- function(number_of_sequences) {
|
|||||||
))
|
))
|
||||||
}
|
}
|
||||||
|
|
||||||
amplify_rows <- function(data, column, factor) {
|
#' Saves the sequences and CDR3 to FASTQ files
|
||||||
if (column == "sequence") {
|
#'
|
||||||
dna_string <- Biostrings::DNAStringSet(data)
|
#' @param data A \code{data.frame} with the preprocessed TCR sequences and CDR3
|
||||||
reverse_complement <- Biostrings::reverseComplement(dna_string)
|
|
||||||
return(rep(reverse_complement, factor))
|
|
||||||
}
|
|
||||||
return(rep(data, factor))
|
|
||||||
}
|
|
||||||
|
|
||||||
save_data <- function(data) {
|
save_data <- function(data) {
|
||||||
Biostrings::writeXStringSet(data$sequence, "data/sequence.fasta")
|
Biostrings::writeXStringSet(data$sequence,
|
||||||
vdj_sequences <- data[-1]
|
"data/sequence.fastq",
|
||||||
write.csv(vdj_sequences, "data/vdj_alignment.csv", row.names = FALSE)
|
format = "fastq"
|
||||||
}
|
|
||||||
|
|
||||||
process_data <- function(repertoire, sequencing_runs) {
|
|
||||||
columns <- c(
|
|
||||||
"sequence", "v_sequence_alignment",
|
|
||||||
"d_sequence_alignment", "j_sequence_alignment"
|
|
||||||
)
|
)
|
||||||
data <- repertoire[, columns]
|
Biostrings::writeXStringSet(data$junction, "data/HVR.fastq", format = "fastq")
|
||||||
amplified_data <- mapply(data, names(data),
|
|
||||||
sequencing_runs,
|
|
||||||
FUN = amplify_rows
|
|
||||||
)
|
|
||||||
save_data(amplified_data)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
parse_cli_arguments <- function(args) {
|
#' Applies the reverse complement and amplifies the number of sequences
|
||||||
if (length(args) != 2) {
|
#'
|
||||||
stop("usage: repertoire.r <number of sequences> <sequencing_runs>")
|
#' @param data A \code{data.frame} containing the TCR sequences and CDR3
|
||||||
}
|
#' @param reads Number of times to amplify each sequence
|
||||||
return(c(args[1], args[2]))
|
#' @return A \code{data.frame} with reverse complement sequences and VJ metadata
|
||||||
|
process_data <- function(data, reads) {
|
||||||
|
dna_sequence <- Biostrings::DNAStringSet(data$sequence)
|
||||||
|
data$sequence <- Biostrings::reverseComplement(dna_sequence)
|
||||||
|
names(data$sequence) <- paste(rownames(data), data$v_call, data$j_call, " ")
|
||||||
|
data$junction <- Biostrings::DNAStringSet(data$junction)
|
||||||
|
names(data$junction) <- rownames(data)
|
||||||
|
amplified_data <- data[rep(seq_len(nrow(data)), reads), ]
|
||||||
|
return(amplified_data)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#' Checks the number of command line arguments and captures them
|
||||||
|
#'
|
||||||
|
#' @return A \code{vector} containing the command line arguments
|
||||||
|
parse_cli_arguments <- function() {
|
||||||
args <- commandArgs(trailingOnly = TRUE)
|
args <- commandArgs(trailingOnly = TRUE)
|
||||||
arguments <- parse_cli_arguments(args)
|
if (length(args) != 2) {
|
||||||
number_of_sequences <- as.integer(arguments[1])
|
stop("usage: repertoire.r <number of sequences> <number of reads>")
|
||||||
sequencing_runs <- as.integer(arguments[2])
|
}
|
||||||
repertoire <- generate_repertoire(number_of_sequences)
|
return(args)
|
||||||
process_data(repertoire, sequencing_runs)
|
}
|
||||||
|
|
||||||
|
args <- parse_cli_arguments()
|
||||||
|
repertoire <- generate_repertoire(number_of_sequences = as.integer(args[1]))
|
||||||
|
data <- process_data(data = repertoire, reads = args[2])
|
||||||
|
save_data(data)
|
||||||
Reference in New Issue
Block a user