Compare commits
56 Commits
b51706d0c0
...
0.2.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
2058fc96d7
|
|||
|
e4189cab01
|
|||
|
2acec89f84
|
|||
|
91b3e37bd8
|
|||
|
bf33b65191
|
|||
|
e8f03189c2
|
|||
|
f4b7a41599
|
|||
|
9e8beefd38
|
|||
|
40205706e1
|
|||
|
8ffa86a965
|
|||
|
1f7b40d224
|
|||
|
ad8abcc4fc
|
|||
|
6440816a87
|
|||
|
0e005735bc
|
|||
|
4f0936718b
|
|||
|
1b6e2d13ea
|
|||
|
36eb73b458
|
|||
|
81a57657fe
|
|||
|
5afe040592
|
|||
|
c250c139dd
|
|||
|
4dec2061fc
|
|||
|
4adb92e901
|
|||
|
83819b296b
|
|||
|
a7c1df5ce2
|
|||
|
81ebd4fbbe
|
|||
|
659f0097d8
|
|||
|
fb5d781c66
|
|||
|
35406497a3
|
|||
|
b771071974
|
|||
|
2a997a3e5c
|
|||
|
1020d610d3
|
|||
|
5154a35fca
|
|||
|
18ffbf9a75
|
|||
|
82fdfdc6b9
|
|||
|
dd9f7ffde4
|
|||
|
e694ee3292
|
|||
|
e5a7b726a9
|
|||
|
38b35f7d12
|
|||
|
f81e4af94e
|
|||
|
576597cb04
|
|||
|
13f453718d
|
|||
|
3a10380d8c
|
|||
|
8f5b9ee698
|
|||
|
66b39485a9
|
|||
|
97b8914cd5
|
|||
|
bc666a37c7
|
|||
|
d5bf8f3b72
|
|||
|
762791829a
|
|||
|
7b15df7614
|
|||
|
f4a001f821
|
|||
|
d2e45bc00f
|
|||
|
deb1066982
|
|||
|
edc4a72425
|
|||
|
42aadb1e28
|
|||
|
ae5014fd74
|
|||
|
34722f3ebf
|
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
*.fastq
|
||||
68
README.md
Normal file
68
README.md
Normal file
@@ -0,0 +1,68 @@
|
||||
# locigenesis
|
||||
|
||||
locigenesis is a tool that generates a human T-cell receptor (TCR), runs
|
||||
it through a sequence reader simulation tool and extracts CDR3.
|
||||
|
||||
The goal of this project is to generate both HVR sequences with and
|
||||
without sequencing errors, in order to create datasets for a Machine
|
||||
Learning algorithm.
|
||||
|
||||
## Technologies
|
||||
|
||||
- [immuneSIM](https://github.com/GreiffLab/immuneSIM/): in silico
|
||||
generation of human and mouse BCR and TCR repertoires
|
||||
- [CuReSim](http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/):
|
||||
read simulator that mimics Ion Torrent sequencing
|
||||
|
||||
## Installation
|
||||
|
||||
This project uses [Nix](https://nixos.org/) to ensure reproducible
|
||||
builds.
|
||||
|
||||
1. Install Nix (compatible with MacOS, Linux and
|
||||
[WSL](https://docs.microsoft.com/en-us/windows/wsl/about)):
|
||||
|
||||
```bash
|
||||
curl -L https://nixos.org/nix/install | sh
|
||||
```
|
||||
|
||||
2. Clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
|
||||
```
|
||||
|
||||
3. Change the working directory to the project:
|
||||
|
||||
```bash
|
||||
cd locigenesis
|
||||
```
|
||||
|
||||
4. Enter the nix-shell:
|
||||
|
||||
```bash
|
||||
nix-shell
|
||||
```
|
||||
|
||||
After running these commands, you will find yourself in a shell that
|
||||
contains all the needed dependencies.
|
||||
|
||||
## Usage
|
||||
|
||||
An execution script that accepts 2 parameters is provided, the following
|
||||
command invokes it:
|
||||
|
||||
```bash
|
||||
./generation.sh <number of sequences> <number of reads>
|
||||
```
|
||||
|
||||
- \<number of sequences\>: an integer that specifies the number of
|
||||
different sequences to generate
|
||||
- \<number of reads\>: an integer that specifies the number of reads
|
||||
to perform on each sequence
|
||||
|
||||
The script will generate 2 files under the data directory:
|
||||
|
||||
|HVR.fastq | curesim-HVR.fastq |
|
||||
|:----:|:-----:|
|
||||
|Contains the original CDR3 sequence|Contains CDR3 after the read simulation, with sequencing errors |
|
||||
@@ -1,3 +0,0 @@
|
||||
* locigenesis
|
||||
|
||||
locigenesis is a tool that generates an immune repertoire and runs it through a sequence reader simulation tool, to generate sequencing errors.
|
||||
BIN
data/j_segments_phe.rds
Normal file
BIN
data/j_segments_phe.rds
Normal file
Binary file not shown.
BIN
data/v_segments.rds
Normal file
BIN
data/v_segments.rds
Normal file
Binary file not shown.
@@ -1,21 +1,22 @@
|
||||
#!/bin/sh
|
||||
|
||||
usage() {
|
||||
echo "usage: generation.sh <number of sequences>"
|
||||
echo "usage: generation.sh <number of sequences> <number of reads>"
|
||||
exit 1
|
||||
}
|
||||
|
||||
if [ $# != 1 ]; then
|
||||
if [ $# != 2 ]; then
|
||||
usage
|
||||
fi
|
||||
|
||||
sequences=$1
|
||||
number_of_reads=$2
|
||||
data_directory="data/"
|
||||
fastq=".fastq"
|
||||
filename="sequence"
|
||||
prefix="curesim_"
|
||||
|
||||
Rscript src/repertoire.r "$sequences"
|
||||
|
||||
for file in "$data_directory"*.fastq; do
|
||||
file_name=$(echo "$file" | cut -d / -f 2)
|
||||
java -jar tools/CuReSim.jar -f "$file" -o "$data_directory$prefix$file_name"
|
||||
done
|
||||
Rscript src/repertoire.r "$sequences" "$number_of_reads" &&
|
||||
CuReSim -f "$data_directory$filename$fastq" -o "$data_directory$prefix$filename$fastq"
|
||||
Rscript src/alignment.r
|
||||
rm "$data_directory/log.txt"
|
||||
|
||||
@@ -17,10 +17,10 @@
|
||||
"homepage": "",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6",
|
||||
"sha256": "16da722vqn96k1scls8mr8l909hl66r7y4ik6sad4ms3vmxbkbb3",
|
||||
"rev": "a565a2165ab6e195d7c105a8416b8f4b4d0349a4",
|
||||
"sha256": "1x90qm533lh8xh172rqfcj3pwg8imyx650xgr41rqppmm6fli4w1",
|
||||
"type": "tarball",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/6f1ce38d0c0b1b25727d86637fd2f3baf7b0f1f6.tar.gz",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/a565a2165ab6e195d7c105a8416b8f4b4d0349a4.tar.gz",
|
||||
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
|
||||
}
|
||||
}
|
||||
|
||||
35
shell.nix
35
shell.nix
@@ -2,14 +2,29 @@
|
||||
|
||||
with pkgs;
|
||||
|
||||
mkShell {
|
||||
buildInputs = [
|
||||
R
|
||||
rPackages.immuneSIM
|
||||
rPackages.Biostrings
|
||||
jdk
|
||||
# Develoment tools
|
||||
rPackages.languageserver
|
||||
rPackages.lintr
|
||||
];
|
||||
let
|
||||
CuReSim = stdenv.mkDerivation rec {
|
||||
name = "CuReSim";
|
||||
version = "1.3";
|
||||
src = fetchzip {
|
||||
url =
|
||||
"http://www.pegase-biosciences.com/wp-content/uploads/2015/08/${name}${version}.zip";
|
||||
sha256 = "1hvlpgy4haqgqq52mkxhcl9i1fx67kgwi6f1mijvqzk0xff77hkp";
|
||||
stripRoot = true;
|
||||
extraPostFetch = ''
|
||||
chmod go-w $out
|
||||
'';
|
||||
};
|
||||
|
||||
nativeBuildInputs = [ makeWrapper ];
|
||||
|
||||
installPhase = ''
|
||||
mkdir -pv $out/share/java $out/bin
|
||||
cp -r ${src} $out/share/java/${name}
|
||||
makeWrapper ${jre}/bin/java $out/bin/CuReSim --add-flags "-jar $out/share/java/${name}/${name}.jar"
|
||||
'';
|
||||
};
|
||||
in mkShell {
|
||||
buildInputs =
|
||||
[ R rPackages.immuneSIM rPackages.Biostrings rPackages.stringr CuReSim ];
|
||||
}
|
||||
|
||||
153
src/alignment.r
Normal file
153
src/alignment.r
Normal file
@@ -0,0 +1,153 @@
|
||||
library(Biostrings)
|
||||
library(parallel)
|
||||
|
||||
#' Import and process the TCR and VJ sequences
|
||||
#'
|
||||
#' @param file A file path with the sequences after applying a read simulator
|
||||
#' @return A \code{list} with the TCR sequences and VJ sequences
|
||||
parse_data <- function(file) {
|
||||
reversed_sequences <- Biostrings::readQualityScaledDNAStringSet(file)
|
||||
sequences <- Biostrings::reverseComplement(reversed_sequences)
|
||||
vj_segments <- union(
|
||||
readRDS("data/v_segments.rds"),
|
||||
readRDS("data/j_segments_phe.rds")
|
||||
)
|
||||
return(list(sequences, vj_segments))
|
||||
}
|
||||
|
||||
#' Extracts the VJ metadata from the sequences read identifier
|
||||
#'
|
||||
#' @param metadata The read identifier of a sequence
|
||||
#' @return A \code{list} with the V and J gene identifier
|
||||
parse_metadata <- function(metadata) {
|
||||
id_elements <- unlist(strsplit(metadata, split = " "))
|
||||
v_identifier <- id_elements[2]
|
||||
j_identifier <- id_elements[3]
|
||||
return(list(v_id = v_identifier, j_id = j_identifier))
|
||||
}
|
||||
|
||||
#' Fetches the sequence that matches the VJ gene identifier
|
||||
#'
|
||||
#' @param names The names of the VJ sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @param id The read identifier of a sequence
|
||||
#' @return A \code{character} containing the gene sequence
|
||||
match_id_sequence <- function(names, vdj_segments, id) {
|
||||
matches <- grep(names, pattern = id)
|
||||
if(id == "TRBJ2-2"){
|
||||
row <- matches[2]
|
||||
} else {
|
||||
row <- matches[1]
|
||||
}
|
||||
return(as.character(vdj_segments[row]))
|
||||
}
|
||||
|
||||
#' Gets the V and J sequences for a particular read identifier
|
||||
#'
|
||||
#' @param metadata The read identifier of a sequence
|
||||
#' @param names The names of the VJ sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @return A \code{list} with the V and J sequences
|
||||
get_vj_sequence <- function(metadata, names, vdj_segments) {
|
||||
identifiers <- parse_metadata(metadata)
|
||||
v_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["v_id"])
|
||||
j_sequence <- match_id_sequence(names, vdj_segments, id = identifiers["j_id"])
|
||||
return(list(v_seq = v_sequence, j_seq = j_sequence))
|
||||
}
|
||||
|
||||
#' Obtains the VJ sequences for all the TCR sequences
|
||||
#'
|
||||
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @return A \code{data.frame} with the V and J sequences
|
||||
fetch_vj_sequences <- function(sequences, vdj_segments) {
|
||||
vj_sequences <- sapply(names(sequences),
|
||||
names(vdj_segments),
|
||||
vdj_segments,
|
||||
FUN = get_vj_sequence
|
||||
)
|
||||
results <- data.frame(t(vj_sequences))
|
||||
return(results)
|
||||
}
|
||||
|
||||
#' Perform a pairwise alignment of a sequence with the canonical V or J sequence
|
||||
#'
|
||||
#' @param sequence A \code{DNAString} containing the TCR sequences
|
||||
#' @param vdj_segment A \code{DNAString} containing the V or J sequence
|
||||
#' @return A \code{PairwiseAlignments}
|
||||
align_sequence <- function(sequence, vdj_segment) {
|
||||
return(Biostrings::pairwiseAlignment(
|
||||
subject = sequence,
|
||||
pattern = vdj_segment,
|
||||
type = "global-local",
|
||||
gapOpening = 1
|
||||
))
|
||||
}
|
||||
|
||||
#' Computes the coordinate shift of the Cysteine due to indels
|
||||
#'
|
||||
#' @param insertion An \code{IRanges} containing the insertions
|
||||
#' @param deletion An \code{IRanges} containing the deletions
|
||||
#' @param cys A \code{list} with the Cysteine coordinates
|
||||
#' @param alignment A \code{PairwiseAlignments}
|
||||
#' @return A \code{list} with the delta of the Cysteine coordinates
|
||||
handle_indels <- function(insertion, deletion, cys, alignment) {
|
||||
ins_start <- sum(Biostrings::width(deletion[start(deletion) <= cys$start]))
|
||||
ins_end <- sum(Biostrings::width(deletion[end(deletion) <= cys$end]))
|
||||
shift_num <- c(0, cumsum(Biostrings::width(insertion))[-length(ins_start)])
|
||||
shifted_ins <- IRanges::shift(insertion, shift_num)
|
||||
gaps <- sum(width(shifted_ins[end(shifted_ins) < cys$start + ins_start])) +
|
||||
nchar(stringr::str_extract(alignedSubject(alignment), "^-*"))
|
||||
return(list("start" = ins_start - gaps, "end" = ins_end - gaps))
|
||||
}
|
||||
|
||||
#' Find the coordinates of the first Cysteine of the HVR
|
||||
#'
|
||||
#' @param alignment A \code{PairwiseAlignments}
|
||||
#' @return A \code{list} with the Cysteine coordinates
|
||||
get_cys_coordinates <- function(alignment) {
|
||||
cys <- list("start" = 310, "end" = 312)
|
||||
insertion <- unlist(Biostrings::insertion(alignment))
|
||||
deletion <- unlist(Biostrings::deletion(alignment))
|
||||
delta_coordinates <- handle_indels(insertion, deletion, cys, alignment)
|
||||
read_start <- unlist(start(Biostrings::Views(alignment)))
|
||||
cys_start <- cys$start + delta_coordinates$start + read_start - 1
|
||||
cys_end <- cys$end + delta_coordinates$end + read_start
|
||||
return(list("start" = cys_start, "end" = cys_end))
|
||||
}
|
||||
|
||||
#' Delimit the hypervariable region (HVR) for each TCR sequence
|
||||
#'
|
||||
#' @param sequences A \code{QualityScaledDNAStringSet} with the TCR sequences
|
||||
#' @param vdj_segments A \code{DNAStringSet} containing the VJ sequences
|
||||
#' @param cores Number of cores to apply multiprocessing
|
||||
#' @return A \code{QualityScaledDNAStringSet} containing the HVR
|
||||
get_hvr_sequences <- function(sequences, vdj_segments, cores = detectCores()) {
|
||||
df <- fetch_vj_sequences(sequences, vdj_segments)
|
||||
v_alignment <- parallel::mcmapply(sequences,
|
||||
df$v_seq,
|
||||
FUN = align_sequence,
|
||||
mc.cores = cores
|
||||
)
|
||||
cys_coordinates <- parallel::mclapply(v_alignment, FUN = get_cys_coordinates)
|
||||
cys_df <- as.data.frame(do.call(rbind, cys_coordinates))
|
||||
remaining <- Biostrings::subseq(sequences, start = unlist(cys_df$end) + 1)
|
||||
j_alignment <- parallel::mcmapply(remaining,
|
||||
df$j_seq,
|
||||
FUN = align_sequence,
|
||||
mc.cores = cores
|
||||
)
|
||||
j_start <- parallel::mclapply(
|
||||
j_alignment,
|
||||
function(x) start(Biostrings::Views(x)),
|
||||
mc.cores = cores
|
||||
)
|
||||
hvr_start <- unlist(cys_df$start)
|
||||
hvr_end <- unlist(cys_df$start) + unlist(j_start) + 2
|
||||
hvr <- Biostrings::subseq(sequences, start = hvr_start, end = hvr_end)
|
||||
return(hvr)
|
||||
}
|
||||
|
||||
data <- parse_data(file = "data/curesim_sequence.fastq")
|
||||
hvr <- get_hvr_sequences(sequences = data[[1]], vdj_segments = data[[2]])
|
||||
Biostrings::writeXStringSet(hvr, "data/curesim-HVR.fastq", format = "fastq")
|
||||
@@ -1,55 +1,57 @@
|
||||
library(immuneSIM)
|
||||
library(Biostrings)
|
||||
|
||||
generate_repertoires <- function(number_of_sequences) {
|
||||
a_chain <- immuneSIM(
|
||||
#' Generate the beta chain of a human T-cell receptor (TCR)
|
||||
#'
|
||||
#' @param number_of_sequences Number of different sequences to generate
|
||||
#' @return A \code{data.frame} with the sequences, V and J genes and CDR3
|
||||
generate_repertoire <- function(number_of_sequences) {
|
||||
return(immuneSIM(
|
||||
number_of_seqs = number_of_sequences,
|
||||
species = "hs",
|
||||
receptor = "tr",
|
||||
chain = "a",
|
||||
verbose = TRUE
|
||||
chain = "b"
|
||||
))
|
||||
}
|
||||
|
||||
#' Saves the sequences and CDR3 to FASTQ files
|
||||
#'
|
||||
#' @param data A \code{data.frame} with the preprocessed TCR sequences and CDR3
|
||||
save_data <- function(data) {
|
||||
Biostrings::writeXStringSet(data$sequence,
|
||||
"data/sequence.fastq",
|
||||
format = "fastq"
|
||||
)
|
||||
b_chain <- immuneSIM(
|
||||
number_of_seqs = number_of_sequences,
|
||||
species = "hs",
|
||||
receptor = "tr",
|
||||
chain = "b",
|
||||
verbose = TRUE
|
||||
)
|
||||
return(list("a_chain" = a_chain, "b_chain" = b_chain))
|
||||
Biostrings::writeXStringSet(data$junction, "data/HVR.fastq", format = "fastq")
|
||||
}
|
||||
|
||||
process_chain <- function(repertoire) {
|
||||
sequences <- as.character(repertoire$sequence)
|
||||
counts <- as.integer(repertoire$counts)
|
||||
reads <- Biostrings::DNAStringSet(rep(sequences, counts))
|
||||
names(reads) <- seq_len(length(reads))
|
||||
reverse_complement <- Biostrings::reverseComplement(reads)
|
||||
return(reverse_complement)
|
||||
}
|
||||
|
||||
preprocess_data <- function(repertoires) {
|
||||
filtered_repertoires <- lapply(repertoires, process_chain)
|
||||
names(filtered_repertoires) <- names(repertoires)
|
||||
return(filtered_repertoires)
|
||||
}
|
||||
|
||||
save_data <- function(repertoires) {
|
||||
for (chain in names(repertoires)) {
|
||||
file_name <- paste("data/", chain, ".fastq", sep = "")
|
||||
Biostrings::writeXStringSet(repertoires[[chain]], file_name, format = "fastq")
|
||||
}
|
||||
}
|
||||
|
||||
parse_cli_arguments <- function(args) {
|
||||
if (length(args) != 1) {
|
||||
stop("usage: repertoire.r <number of sequences>")
|
||||
}
|
||||
return(as.integer(args[1]))
|
||||
#' Applies the reverse complement and amplifies the number of sequences
|
||||
#'
|
||||
#' @param data A \code{data.frame} containing the TCR sequences and CDR3
|
||||
#' @param reads Number of times to amplify each sequence
|
||||
#' @return A \code{data.frame} with reverse complement sequences and VJ metadata
|
||||
process_data <- function(data, reads) {
|
||||
dna_sequence <- Biostrings::DNAStringSet(data$sequence)
|
||||
data$sequence <- Biostrings::reverseComplement(dna_sequence)
|
||||
names(data$sequence) <- paste(rownames(data), data$v_call, data$j_call, " ")
|
||||
data$junction <- Biostrings::DNAStringSet(data$junction)
|
||||
names(data$junction) <- rownames(data)
|
||||
amplified_data <- data[rep(seq_len(nrow(data)), reads), ]
|
||||
return(amplified_data)
|
||||
}
|
||||
|
||||
#' Checks the number of command line arguments and captures them
|
||||
#'
|
||||
#' @return A \code{vector} containing the command line arguments
|
||||
parse_cli_arguments <- function() {
|
||||
args <- commandArgs(trailingOnly = TRUE)
|
||||
number_of_sequences <- parse_cli_arguments(args)
|
||||
sim_repertoire <- generate_repertoires(number_of_sequences)
|
||||
processed_data <- preprocess_data(sim_repertoire)
|
||||
save_data(processed_data)
|
||||
if (length(args) != 2) {
|
||||
stop("usage: repertoire.r <number of sequences> <number of reads>")
|
||||
}
|
||||
return(args)
|
||||
}
|
||||
|
||||
args <- parse_cli_arguments()
|
||||
repertoire <- generate_repertoire(number_of_sequences = as.integer(args[1]))
|
||||
data <- process_data(data = repertoire, reads = args[2])
|
||||
save_data(data)
|
||||
Reference in New Issue
Block a user